RESEARCH PERSONNEL:

- Task Leader: Yon-Chun Chou, NTU
- Co-PI:
 - Argon Chen, NTU
- Students
 - Jin-Zhong Lin
 - Jolin Yang
 - Yi-Yu Liang
 - Yu Heng Chang

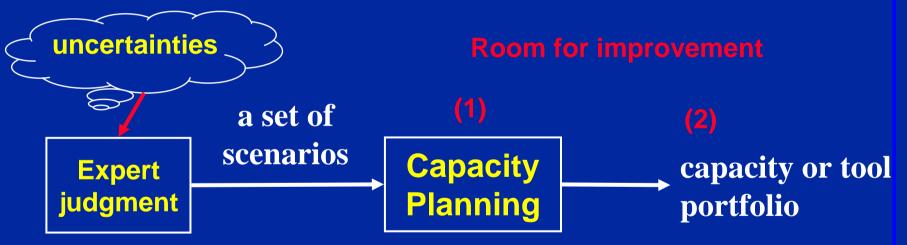
Primary Anticipated Results:

- A methodology for analyzing the capacity requirements of products and their groupings
- A risk model for capacity planning under uncertainty
- A methodology for optimal capacity allocation

Task Description:

- Year 1: Capacity requirement analysis at multiple levels of granularity
 - Developed a method to analyze the capacity requirements of a hierarchy of products. (Products are first classified into a hierarchy of products and their families based on similarity in routing.)
 - Developed a risk model for capacity plans.
- Year 2: Methodology of capacity planning under uncertainty
 - Developed a framework of analysis for capacity requirement under uncertainty
 - Developed a model to optimize the risk of capacity plans
- Year 3:
 - Refine the algorithms
 - Demonstrate business planning applications, e.g., timing and sizing of plant investment or outsourcing

Task Deliverables:


- Capacity analysis and aggregation method (Model, Report) (DEC-01)
- Integrated method for demand and capacity modeling (Model, Report) (DEC-02)
- A framework and methodologies of business and demand planning (Model, Report) (DEC-03)

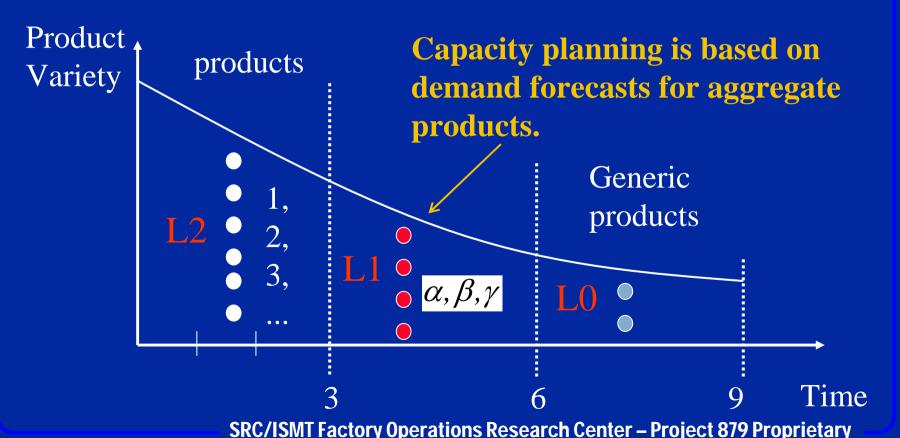
Executive Summary:

During the second year we have

- developed a framework of analysis for capacity planning under uncertain product demands
- developed a method to optimize the risk of capacity plans

Conventional Mathematical Models

 Objective function: to maximize the revenue (subtracted by penalty for lost-sales)


Motivation

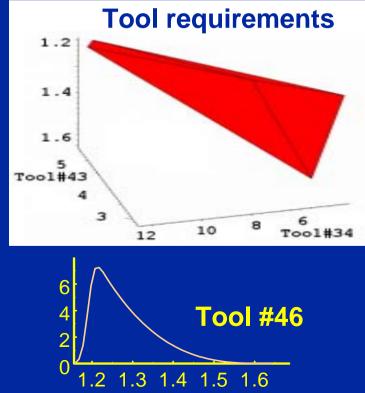
1. This representation of scenarios is crispy.

Scenar	io	Α	В	С
weight		0.4	0.5	0.1
Product	#1	23	26	30
and	#2	12	15	14
demand	#3	10	11	16

- 2. Over-capacity and under-capacity are equally detrimental.
- 3. Risk information has been overlooked.

Product Variety Granularity

Tool Requirements


Suppose a product family

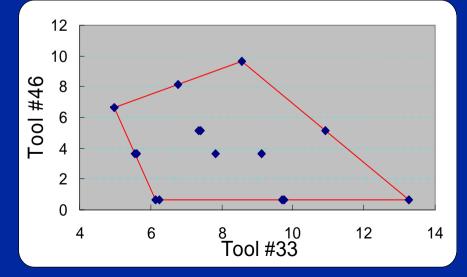
demand
$$D_{\beta} = \sum_{i=1}^{n} D_i = \sum_{i=1}^{n} a_i \cdot D_{\beta}$$

product mix : $\sum_{i=1}^{n} a_i = 1$

i=1

 Because the product mix (*a_i*) is uncertain, the tool requirements will be a convex hull.

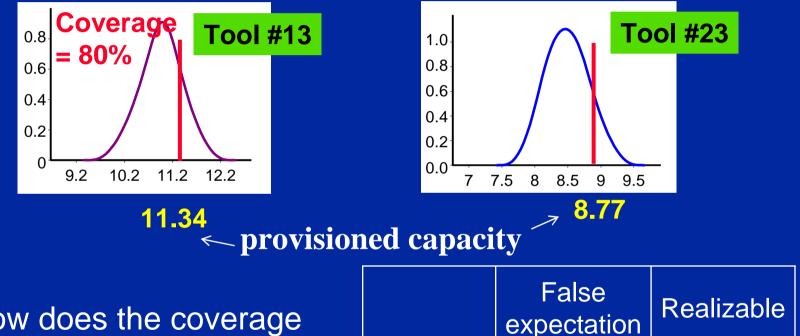
contains n products



A discrete model of the convex hull

 Generate all scenarios of product demand mixes D_i

$$\sum_{i=1}^{n} D_i = D_{\beta}$$


$$R_k = \sum_i W_{k,i} \cdot D_i$$

Correlation between tool requirements

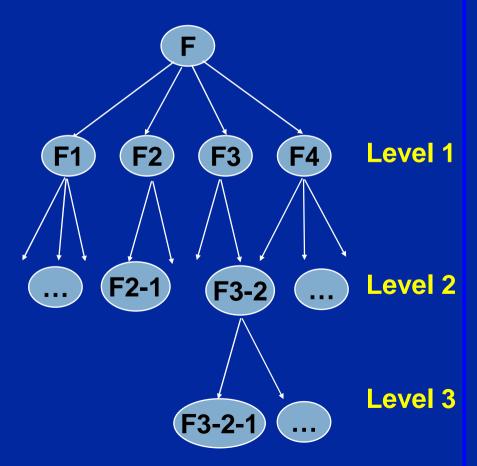
		Tool #13	Tool #16	Tool #21	Tool #23
	Tool #13	-	0.38	-0.43	, 0.97
	Tool #16		-	0.1	0.50
	Tool #21			- /	-0.22
	Tool #23				-
Low correlation • High correlation					
Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junction Junct					
2	3 Tool #21	4 5	9	10 11 Tool #	12 13

Effect of correlation

Tool #13

Tool #23

 How does the coverage improve if the quantity of a tool is increased by 0.1?

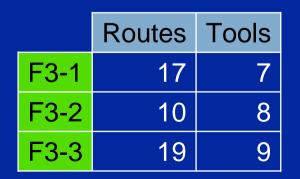

SRC/ISMT Factory Operations Research Center – Project 879 Proprietary

5.58%

7.37%

A Dataset

- 440 routings (F)
- Each routing has 6 to 12 critical tool groups.
- Total numbers of tool groups: 65


• Family Size: Level 1 & 2

	Routes	Tools
F1	136	32
F2	135	12
F3	46	9
F4	123	12

	Routes	Tools
F1-1	32	13
F1-2	23	9
F1-3	60	10
F1-4	21	11

	Routes	Tools
F2-1	42	12
F2-2	8	10
F2-3	51	11
F2-4	23	11
F2-5	11	12

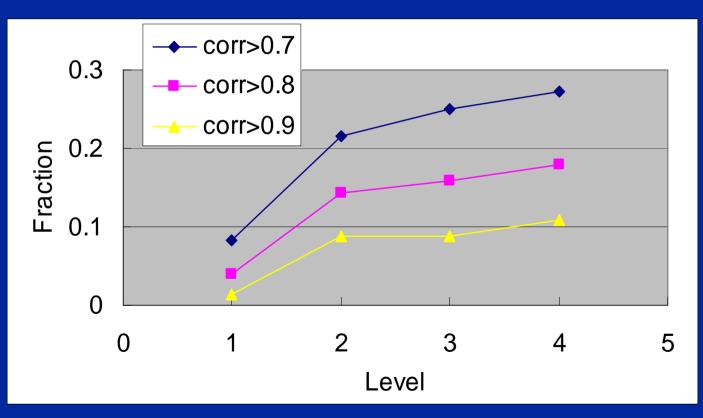
L C
The 4 clusters are
disjoint in tool
groups.

	Routes	Tools
F4-1	48	12
F4-2	20	12
F4-3	55	12

	# R	# T		# R	# T	
F1-1	32	13	F1-1-1	20	13	
F 1-1	52	13	F1-1-2	12	7	
F1-2	23	9				
F1-3	60	60	10	F1-3-1	33	10
F 1-3			00	10	F1-3-2	27
F1-4	21	11				
	# R	# T		# R	# T	
F4-1	48	12	F4-1-1	17	12	
F4-1	40		F4-1-2	31	12	
F4-2	20	12				
F4-3	55	12	F4-3-1	41	12	
14-0	55		F4-3-2	14	12	

• Family size: Level 3

	# R	# T		# R	# T
F2-1 42	4.0	F2-1-1	30	12	
ΓΖ-Ι	42	12	F2-1-2	12	12
F2-2	8	10			
E2 2	F2-3 51	11	F2-3-1	37	11
Г2-3			F2-3-2	14	11
F2-4	23	11			
F2-5	11	12			

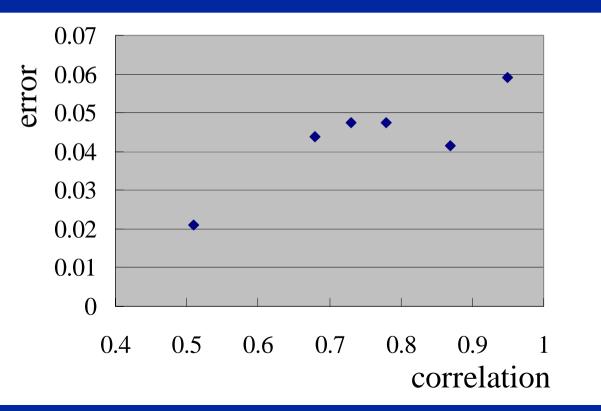

• Family Size: Level 4

	# R	# T		# R	# T
F1-3-1 3	33	10	F1-3-1-1	13	10
			F1-3-1-2	18	10

	# R	# T		# R	# T
F4-1-2 31	21	12	F4-1-2-1 2	23	12
	51		F4-1-2-2	6	12
F4-3-1 41	12	F4-3-1-1	23	12	
	41	12	F4-3-1-2	16	11

	# R	# T		# R	# T
F2-1-1	20	10	F2-1-1-1	18	12
	30	12	F2-1-1-2	10	11
F2-3-1	27	11	F2-3-1-1	17	11
	37		F2-3-1-2	18	11

How many tool pairs have high correlation?

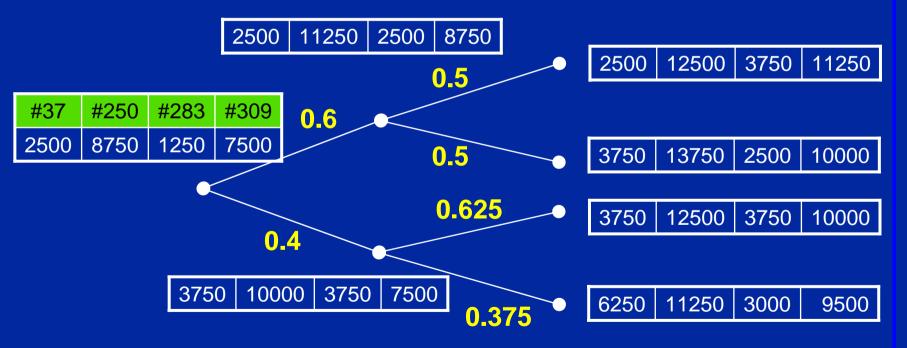


Error coverage for different tool pairs

Tool	#39	#41	#42	#43	#44	#45
#39	-	0.78	-0.77	0.38	0.95	0.03
#41		-	-0.51	0.15	0.87	-0.13
#42			-	-0.72	-0.79	-0.44
#43				-	0.51	0.73
#44					-	0.14
#45						-

Error of coverage estimation

$F_{u,v}(Cu,Cv) - F_u(Cu) \cdot F_v(Cv)$


- A Proposed Procedure of Capacity Planning
 - 1. Use a mathematical model to optimize the revenue and lost-sales penalty. (e.g., stochastic program)
 - 2. Adjust the resultant portfolio solution to improve the coverage

Adjustment capital increment

 x_k : tool quantity of tool group k

 Δx_k : adjustment

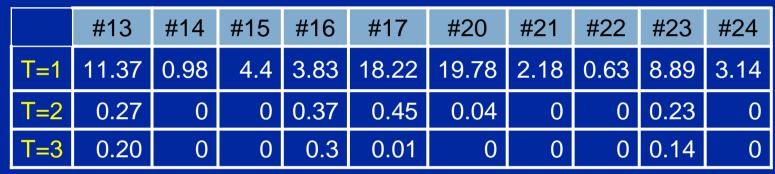
An Example of demand scenarios

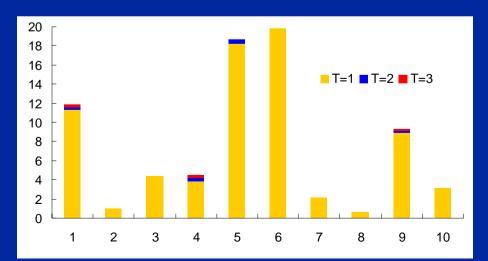
t=1 20K t=2 25K t=3 30K

• A stochastic program

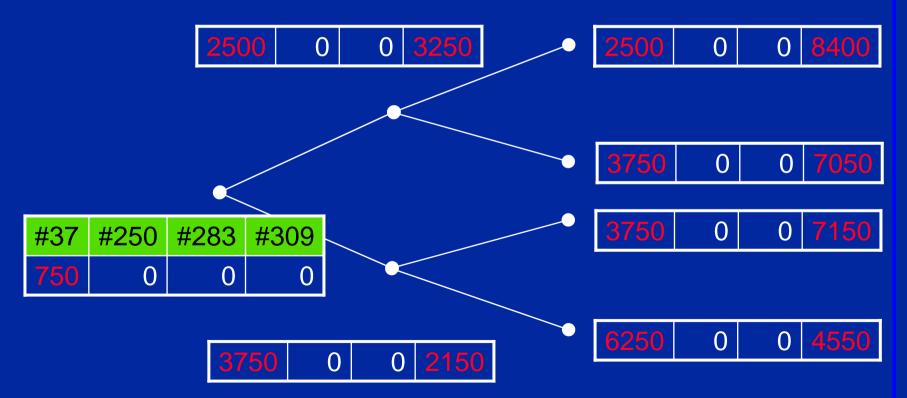
 $P_{s,t}$: prob. of occurence of scenario s $d_{i,s,t}$: demand of product *i* in scenario s

 β_i : penalty of prodution shortage


$$\begin{array}{lll} Min & \sum \sum \limits_{t \ k} \alpha_k \cdot x_{k,t} + \sum \limits_{t \ s \ i} P_{s,t} \cdot \beta_i \cdot u_{i,s,t} \\ s.t. & \textbf{Tool cost} & \textbf{Shormal} \end{array}$$

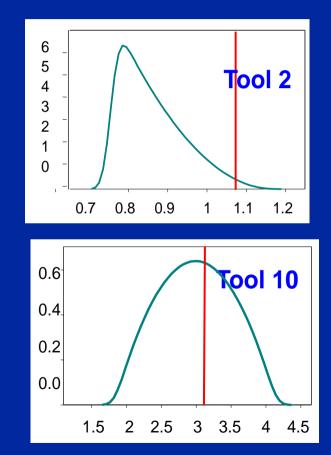

$$\sum_{i} w_{i,k} \cdot y_{i,s,t} \leq C_k \left(\sum_{\tau=0}^{t} x_{k,t}\right) \quad \forall k, (s,t)$$
$$y_{i,s,t} + u_{i,s,t} \geq d_{i,s,t} \qquad \forall i, (s,t)$$

SRC/ISMT Factory Operations Research Center – Project 879 Proprietary

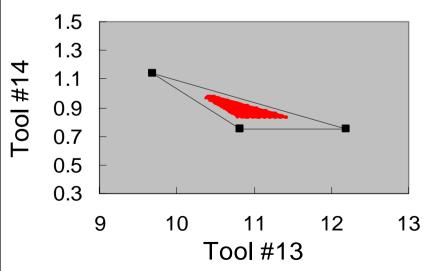

ie penaltv

Resultant Tool Portfolio (tool quantity)





Shortage of production


The coverages of 10 tool groups are not balanced.

Boundary of the convex hull
Total demand = d
The number of products = n

 $d_1+d_2+...+d_n = d$ $d_{1(min)} < d_1 < d_{1(max)}$ $d_{2(min)} < d_2 < d_{2(max)}$: $d_{n(min)} < d_n < d_{n(max)}$

To Optimize the coverage

- 1. Generate the convex hull (a discrete representation)
- 2. Analyze the correlation between tool requirements
- 3. Identify the tool pairs with high correlation
- 4. Compute the density functions from the convex hull

 x_k : tool quantity

- Δx_k : adjustment to tool quantity
- β : additional capital investment

Optimization of the coverage

	Tool Groups										
	#13	#14	#15	#16	#17	#20	#21	#22	#23	#24	
X_k	11.37	0.98	4.4	3.83	18.22	19.78	2.18	0.63	8.89	3.14	
coverage	0.82	0.91	0.36	0.89	0.93	0.99	0.86	1	0.88	0.6	
X _k (=100)	0.13	0.02	0.6	0.17	-0.19	-0.28			0.11	0.36	
coverage	0.88	0.93	0.9	0.93	0.89	0.94	0.86	1	0.93	0.79	
X _k (=500)	0.18	0.12	0.6	0.17	-0.22	-0.28	0.32		0.11	0.86	
coverage	0.9	0.99	0.9	0.93	0.88	0.94	0.96	1	0.93	0.99	

Conclusions

- Developed a framework to represent the uncertainty in tool requirements.
- Showed that the correlation between tool requirements is significant.
- Improvements on capacity planning
 - Robust tool portfolio
 - Risk information

Future Plan and Directions

- Scenario modeling

 Modeling lead-time in capacity planning: correlation between demand scenarios in multiple time periods