Research ID 879 Demand Data Mining and Planning in Semiconductor Manufacturing Networks

National Taiwan University

Argon Chen Yon-Chun Chou Shi-Chung Chang Ruey-Shan Guo

879 Task Summary

Number	Task/Activity	Task Leader	Deliverable(s)	Students	Liasons
879	Demand Data Mining and Planning in Semiconductor Manufacturing Netwroks	Argon Chen	Final Report (12/03)		Ron Billings, ISMT F. Robertson, Intel M. Janakarim, Intel
879.001	Intelligent Demand Aggregation and Forecast Solutions	Argon Chen	Annual Report 12/01 Annual Report 12/02 Annual Report 12/03	Peggy Lin Yi-Chung Chang Ken Chen Chun-Hung Lan Hung-Shuo Hsia Bo-Wei Hsieh Ji-Chyuan Liou Tony Huang Kyle Yang	Tony Yu, UMC Kenny Chien, UMC Ying Tat Leung, IBM Sarah Hood, IBM Jonathan Wang, IBM Jonathan Hosking, IBM Jonathan Chang, TAMC Ajay Sevak, Intel Michael O'Brien, Intel
879.002	Integration of Demand Planning and Manufacturing Planning	Yon-Chun Chou	Annual Report 12/01 Annual Report 12/02 Annual Report 12/03	Jin-Zhong Lin Jolin Yang Yi-Yu Liang Yu Heng Chang	Christina Chen, Motorola Kishore Potti, TI Pratap Javangula, TI

879 Task Liaisons

Core				
Stanley, K.J.	Hood, Sarah			
Bonal, Javier	Robertson, Frank			
Cervantes, Ed	Schomig, Alexander			
Farey, Lawrence	-			

Liasions		
Liasions Tony Yu, UMC Kenny Chien, UMC Ying Tat Leung, IBM Sarah Hood, IBM Jonathan Wang, IBM Jonathan Hosking, IBM		
Jonathan Chang, TSMC Ajay Sevak, Intel Michael O'Brien, Intel Christina Chen, Motorola Kishore Potti, TI Pratap Javangula, TI		

879 Project Management

- Project Website
 - http://www.ie.ntu.edu.tw/Dr_Chen/SRC.htm
- Weekly site meetings at NTU
- Weekly task meetings for Tasks 1 and 2
- Quarterly Teleconferences with all industrial liaisons and PI's
- On-site visits to member companies once a year
- Meetings with and visits to Suppliers upon requests

879 Executive Summary

Based on inputs from industrial liaison and core team members, we continue our original research work on the demand/capacity planning problems. We continue to produce new ideas on demand disaggregation and forecasting problems and novel analysis framework and risk model for capacity planning problems. The results can be summarized as follows:

- We have developed dynamic EWMA and double-EWMA demand disaggregation methodologies. The methodologies have been tested using both simulated DRAM demand data and actual semiconductor demand data. Results show great improvement over the conventional methods (task 1)
- We have investigated the fundamental issues of demand aggregation, forecasting and disaggregation. The results show that methods of demand forecasting along with disaggregation, though a very common practice, should be employed with great caution (task 1, presented in INFORMS 2002)
- We have developed a framework of analysis for capacity planning under uncertain product demands (task 2)
- We have developed a method to optimize the risk of capacity plans (task2)

Research Personnel:

- Task Leader: Argon Chen
- Faculty:
 - Ruey-Shan Guo
 - Shi-Chung Chang
- Students
 - Peggy Lin, NTU, MS 6/02
 - Yi-Chung Chang, NTU, MS 6/02
 - Ken Chen, NTU, MS 6/02
 - Chun-Hung Lan, NTU, MS 6/02
 - Hung-Shuo Hsia , NTU, MS 6/02
 - Bo-Wei Hsieh, NTU, PhD 6/02
 - Ji-Chyuan Liou, NTU, PhD
 - Tony Huang, NTU, MS 6/03
 - Kyle Yang, NTU, MS 6/03

Primary Anticipated Results:

- Fundamental research on demand planning
 - Issues of aggregating, forecasting and disaggregating interrelated demands
- Useful demand planning strategies and methodologies
 - Demand planning hierarchy: the optimum demand aggregation/disaggregation structure
 - Forecasting by proportional disaggregation: accurate estimate of product mix of a product family
- A prototype of demand planning software system that incorporated our proposed strategies and methodologies.

Task Description:

- Year 1 Conduct fundamental study on the effects of demand grouping and develop demand grouping strategies. A multivariate time series model is used as the study vehicle to investigate the effects of aggregating interrelated demands. Demand grouping strategies are then proposed to optimize inventory and capacity plans. Define a demand planning structure (DPS) for top-down, middle-out or bottom-up demand planning.
- Year 2 Develop an optimal DPS and forecasting methodologies for aggregated and disaggregated demands. Fundamental research will be first conducted to investigate the effects of aggregating, forecasting and disaggregating interrelated demands. Forecasting strategies are then proposed within the optimal demand planning structure.
- Year 3 Develop an integrated demand data mining and planning software prototype. Statistical properties, natures, and interrelations of demands will be automatically mined out by the software. Optimal aggregation and statistical forecasting strategies will be then suggested to the demand planners.

Task Deliverables:

- Intelligent multidimensional demand aggregation/disaggregation strategies (Model, Report) (Year 1)
 ⇒ Demand Planning Hierarchy
- Forecasting methodologies for multidimensional aggregated demands (Model, Report) (Year 2) ⇒ Forecasting by Proportional Disaggregation
- Integrated demand aggregation/forecast prototype system (Software, Report) (Year 3)

Executive Summary:

- We have developed dynamic EWMA and double-EWMA demand disaggregation methodologies. The methodologies have been tested using both simulated DRAM demand data and actual semiconductor demand data. Results show great improvement over the conventional methods
- We have investigated the fundamental issues of demand aggregation, forecasting and disaggregation. The results show that methods of demand forecasting along with disaggregation, though a very common practice, should be employed with great caution
- We are in the process of applying for patents for "Demand Planning Hierarchy" and "Dynamic EWMA Demand Disaggregation Methods"
- Currently, i2 Technologies, Adex and a local data mining company have shown great interest in technology transfer of both
- We will develop a prototype of "Demand Planning Hierarchy" software system and test it with more cases of actual semiconductor demand data.

Outlines

- 1. Conventional Disaggregation Methods
- 3. EWMA Disaggregation Methods
- 4. Dynamic Disaggregation Method
- 5. Dynamic Disaggregation Method with PLC Indicator
- 6. Simulated Demand Model
- 7. Double EWMA Disaggregation Method
- 8. Performance Comparison

Conventional Disaggregation Method

Method-A $P_{i,n+1} = \sum_{t=1}^{n} P_{i,t} / n$

(Average the Proportion of previous "n" periods to estimate the proportion next time period)

Product	Time	Week 1	Week 2	Week 3	
A		10	20	30	
В		40	80	20	
Total		50	100	50	Method-A
Proportion A		0.2	0.2	0.6	0.333
Proportion B		0.8	0.8	0.4	0.667

Method-B

$$P_{i,n+1} = \frac{\sum_{t=1}^{n} d_{i,t}}{n} / \frac{\sum_{t=1}^{n} D_{t}}{n}$$

(Average the demand of previous "n" periods to estimate the proportion next time period)

Product	Week 1	Week 2	Week 3	Total	Method-B
A	10	20	30	60	0.300
В	40	80	20	140	0.700
Total	50	100	50	200	

Proposed Methodology - EWMA

Exponentially Weighted Moving Average statistic is introduced to catch the PLC

Exponential weights

$$w_t = \alpha (1-\alpha)^{n-1}$$

α: Exponential weight parameter
t: Exponential weight for time period "t"

n : Number of total historical data

 Different products have different " α" values for best SSE performance.

EWMA Disaggregation Formula

Steepest Descent Method

Contour Plot of SSE value (4.1c)

PLC Indicator Dynamic EWMA (PIDE) Method

- **1.** Use the indicator "SAC" to estimate the α dynamically.
- 2. The PLC effect is considered and the disaggregation accuracy is improved.
- 3. Computation time of searching suitable α is greatly reduced.

Characteristics of Industrial Demands

Effect of PLC Standard deviation of demand is proportional to

demand mean" (D. C. Heat & P. L. Jackson), (R. G. Brown) Product demand at different time period can be seen as different distributions with specific mean and standard deviation that is proportional to its mean

3. Product Substitution within the product family

The Simulated DRAM Demand Dataset

Simulated demand

- 3 products, 150-week demand data
- Product-1 is simulated as 256MB
- Product-2 is simulated as 128MB
- Product-3 is simulated as 512MB
- Each phase is simulated about 50 week length (1 year)

SAC of Simulated Dataset

Performance Comparisons

Performance metric: Proportion Mean Squared Error

$$PMSE = \sum_{t=50+1}^{50+100} \sum_{i=1}^{3} (\hat{P}_{i,t} - P_{i,t})^2 / 100$$

 $P_{i,t}$:Proportion of product "i" at time "t"

 $P_{i,t}$:Estimated proportion of product "i" at time "t"

Testing Data : Simulated Demand Data Testing Methods :

- 1. Conventional Method-A
- 2. Conventional Method-B
- 3. PIDE-SAC method : PIDE method indicated by SAC.
 - (SAC sample size 15, 25, 50 are tested as

PIDE-SAC-15, PIDE-SAC-25, PIDE-SAC-50 methods)

Testing Results : [Conventional Method	Total PMSE	
	Method-A	0.072740	
	Method-B	0.064664	
	PIDE Method (SAC)	Total PMSE	
Γ	PIDE-SAC-15	0.004540	
C	PIDE-SAC-25	0.001962	
Γ	PIDE-SAC-50	0.002375	

"25(1/2 PLC phase)" is examined the relative suitable sample size for SAC SRC/ISMI factory Operations Research Center – Project 879 Proprietary

Limitation of EWMA Method

Consider a "n-period" proportion data

The EWMA statistic is not able to capture the future trend beyond the historical data range

The **Double EWMA** smoothing constant β is introduced to estimate the "future trend"

<u> 5KG/15M1 Factory operations research center – Project 8/9 Proprietary</u>

PLC Indicator Dynamic Double EWMA (PIDDE) Method

- = Proportion's mean estimates of product "i" at time "k"
- = Proportion difference estimates of product "i" at time "k"
- = Demand of product "i" at time "k"
- $= d_{i,k} d_{i,k-1}$ = Demand difference of product "i" at time "k" and "k-1"
- α_i, β_i = Smoothing Constant of product "i"
 - = Number of total historical data n
- = Number of total products m

 Δd_{ik}

Indicator of β – Sample Auto-Correlation

Since ΔP_i is estimated by β , SAC of proportion differences " ΔP_i " is used as the indicator for β determination

Performance Comparison

Testing Methods : (sample sizes: 15, 25, and 50)

Conventional Methods A and B SDDE: Steepest Descent Dynamic EWMA SDDDE: Steepest Descent Dynamic Double EWMA PIDE: PLC Indicator Dynamic EWMA PIDDE: PLC Indicator Dynamic Double EWMA

Testing Results :

Conventional Method	Total PMSE	Computation Time
Method-A	0.072740	< 1 sec
Method-B	0.064664	< 1 sec
SDDE Method	Total PMSE	Computation Time
SDDE-15	0.000943	20 minutes
SDDE-25	0.000888	40 minutes
SDDE-50	0.001037	90 minutes
SDDDE Method	Total PMSE	Computation Time
SDDDE-15	0.000942	20 hours
SDDDE-25	0.000872	35 hours
SDDDE-50	0.001025	72 hours
PIDE Method	Total PMSE	Computation Time
PIDE-SAC-15	0.004540	1 minutes
PIDE-SAC-25	0.001962	2 minutes
PIDE-SAC-50	0.002375	4 minutes
PIDDE Method	Total PMSE	Computation Time
PIDDE-SAC-15	0.001036	25 minutes
PIDDE-SAC-25	0.001017	43 minutes
PIDDE-SAC-50	0.001109	75 minutes

Actual Semiconductor Demand

Appendix – Real Data Proportion

Performance Comparison

Testing Data : Simulated Demand Data and Real Semiconductor Demand Data: 3 products, 121 weeks (60→historical data, 61→forecast)

Testing Results :

Conventional Method	Total PMSE	Computation Time
Method-A	0.009766	< 1 sec
Method-B	0.011467	< 1 sec
PIDE Method	Total PMSE	Computation Time
PIDE-SAC-15	0.008208	1 minutes
PIDE-SAC-25	0.007813	2 minutes
PIDE-SAC-50	0.007875	4 minutes
PIDDE Method	Total PMSE	Computation Time
PIDDE-SAC-15	0.008335	7 minutes
PIDDE-SAC-25	0.008137	25 minutes
PIDDE-SAC-50	0.010753	43 minutes

Findings

- EWMA and double EWAM disaggregation formulas are developed.
- "Sample Autocorrelation" is found in this research to be a good indicator of PLC phase transition.
- The proposed PLC indicator dynamic disaggregation methods effectively improve the disaggregation accuracy by considering PLC effects.
- The best-performed sample size is about 1/2 of one PLC phase.
- Double EWMA method is more effective for short PLC products and EWMA method is suitable for long PLC products.