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Abstract – Semiconductor manufacturing technology is 
progressing rapidly. As shown by the celebrated Moor’s laws, 
new generations of semiconductor products emerge in the 
pace of every 6 months. As a result, technologies of different 
generations often co-exist in the same fabrication facility. For 
effective manufacturing resource planning, accurate 
prediction of product mix is therefore crucial. Product-mix 
prediction is usually made by performing the demand 
disaggregation function in demand planning. In this paper, 
weighted product-mix estimation methodologies are first 
proposed. Dynamic weighting schemes are then developed to 
improve the accuracy of product mix prediction. The 
methodologies will be tested with simulated DRAM demands 
and actual semiconductor demands of different technology 
generations. 

INTRODUCTION 

Results of demand planning serve as the basis of every 
planning activity in the supply network and ultimately 
determine the effectiveness of manufacturing/logistic 
operations in the network. A common demand planning 
approach is to make forecast at an aggregated level first, and 
then break down (disaggregate) the forecast statistically 
and/or judgmentally into the individual forecasts. This is 
known to be an effective means for better forecasting because 
the aggregated product-group demand is observed to fluctuate 
less and easier to make forecast. This approach, however, 
requires an accurate product-mix prediction to break down the 
aggregated demand forecast into individual product forecasts. 
Product-mix can be expressed as demand proportions in a 
product group.  For example, proportions of 64M, 128M and 
256M DRAM demands form the product-mix of the DRAM 
product group. Thus, product-mix estimation is equivalent to 
demand disaggregation. That is, to estimate the product-mix, 
we need to estimate the proportions of individual demands in 
the product group. 

An effective product mix estimate should take into 
consideration the characteristics of semiconductor demands. 
There are three important characteristics that will be 
considered in our proposed methodologies: 

1. Product substitutability: most products within the same 
product group are substitutable among one another. 

2. Product life cycle (PLC): Fast-paced technology 
development leads to fast PLC transition. 

3. Variability proportional to volume: the greater the demand 
volume, the more volatile the demand. 

In Fig. 1, we simulate the 128Mb, 256Mb and 512Mb DRAM 
demands to resemble these three characteristics. 

 

Fig. 1 Simulated DRAM demands 

It can be seen, substitution of phasing out product demand by 
the emerging product leads to dramatic change of product-
mix. It is difficult to estimate the product-mix without 
considering the product life cycles and substitutability. 

In this paper, we first propose weighted product-mix 
estimation methodologies. Dynamic weighting schemes are 
then developed to more effectively capture the PLC for better 
product-mix prediction. Finally, both simulated DRAM 
demands and actual semiconductor demands of different 
technology generations are used to test the proposed 
methodologies. 

WEGHITED PRODUCT-MIX ESTIMATION 

Among the many product-mix estimates (or demand 
disaggregation methods) [1], the following two methods are  
most widely used: 
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where dit is the demand of product i at period t; n is the 

number of historical demand periods; D is the total 

demand at period t; k is the number of products in the product 
group; and is the mean-proportional estimate of product i. 
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îP

 
840-7803-7894-6/03/$17.00 ©2003 IEEE.



As mentioned earlier, directly forecasting on individual 
product demands usually result in a far-off forecast that not 
only impairs the quality of subsequent manufacturing plans 
but also send the ripples to the down-stream manufacturing 
activities via the supply chain. To capture the effect of PLC 
change on the product-mix, we would give higher weights to 
the more recent data; that is, we like to have the product-mix 
estimate more influenced by more recently observed 
demands.Thus, we apply exponential weights to the product-
mix estimates in (1), (7), and (13), respectively, to obtain 
product-mix prediction for the next time period.  First, the 
mean-proportional estimate in (1) now becomes an 
exponentially weighted average of historical demands: 
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 where is the prediction of product i proportion for 
period n+1; and w

1,ˆ +nip

it is the weight applied to product i demand 
at time t and satisfies:  (3.7) 
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with the constant αi to control the declining rate over time as 
shown in Fig. 2.  

0
0 .0 5

0 .1
0 .1 5

0 .2
0 .2 5

0 .3
0 .3 5

0 .4
0 .4 5

0 .5

T im e

W e ig h ts

αα = 0.1= 0.1

0
0 .0 5

0 .1
0 .1 5

0 .2
0 .2 5

0 .3
0 .3 5

0 .4
0 .4 5

0 .5

T i m e

W e i g h ts

αα = 0.5= 0.5

 

Fig. 2 Exponential weights controlled by α values 

How to choose appropriate αi values in (3) becomes critical 
for accurate product-mix estimate. 

PLC LEADING INDICATOR 

To find the best smoothing constants αi of forecast estimate at 
period c, that is to find smoothing constants αi (i=1~k), we 
minimize the mean squared forecast errors over s periods: 
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Determination of good αi is a very time consuming task. 
Suppose each αi has 99 possible values )99.0~01.0( i . 
Then, there are 99k possible { }k,,, 21 αK candidates. The 

time to compute all candidates to search for the best 
},,,{ 21 kααα K to minimize (4) requires enormous computing 

power. The most common method is Steepest Descent Search 
[2]. The search of the smoothing constants can be treated as a 
k-variable (α1~αk) steepest-descent search with (4) as the 
objective function to minimize. Treat { },,, 21 kααα K  as a 
point “α” in k-dimension coordinate system. The steepest-
descent search process here can be seen as a process to find 
the point in the k-dimension coordinate system. Furthermore, 
the movements of α from one point to another are reached by 
adjusting each αi with fixed step size “r”. There are three 
possible movements for each αi, adding one step size to αi, 
(αi+r), subtracting one step size from αi, (αI−r), or keep the αi 
at the original position. The successive points of α 
representing the most SSE-reduced direction which is called 
the “gradient vector” while all the other possible directions are 
called “candidate vectors”. Termination of the search occurs 
at the point where the gradient vector becomes null; i.e., the 
current α point has the smallest SSE value. An example of 
two-product steepest-descent smoothing constant search 
process is shown in Fig. 3. 

},,1 tdK

 
Fig.3 Two-product steepest-descent search process 

The steepest descent method is still a computation-intensive 
method. It would be much more efficient if we know the 
direction toward the minimum. Taking the effect of changing 
demand variability into account, we invented a PLC transition 
leading indicator using the sample one-lag autocorrelation 
(SAC) statistic: 
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where SACt is the one-lag sample autocorrelation calculated at 
period t using demand dataset { . When the 
product is at the “growth” or “decline” phase, the product-mix 
proportion significantly rises or falls and the SAC becomes 
higher as well. If the product is mature in the market and its 
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proportion is stable, SAC will be lower because noise dictates 
the changes of the product-mix proportion (Fig. 4).  

 

Fig. 4 Relationship among α, SAC and PLC 

Sample size s in (5) determines how sensitive the SAC is to 
the PLC transition and to the demand noise. Fig. 5 shows the 
SAC values with sample sizes  s=15, 25 and 50 for a 
simulated DRAM demand. 
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Fig. 5 SAC calculated by different sample sizes 

It can be seen that the SAC with a large sample size (s=50) is 
too slow to reflect the PLC transition while the SAC with 
small sample size (s=15), though responsive to the PLC 
transition, is too sensitive to the demand noise. The sample 
size of 25, approximately on half of one PLC phase, gives the 
SAC a very  good indication of PLC transition. 

Fig. 6 shows the smoothing constant estimated by steepest 
descent search (SDS), SAC calculated with s=25 and the 
product-mix proportions of the simulated DRAM data (Fig. 
1). The smoothing constant estimate goes up when the trend is 
rising or declining but goes down in the maturity phase. The 
trend of SAC and the trend of  SDS-estimated smoothing 
constants match each other pretty well. Therefore, SAC would 
be a good leading indicator to determine the changing trend of 
the smoothing constants. That is, the smoothing constant 
estimated at period t+1 should be higher than that at period t 
when SACt+1 is higher than SACt and vice versa. Using the 
SAC as a leading indicator for the search for the best 
smoothing constants has been proven to cut the computing 
time to 1/55. Fig. 7 shows the procedure of the prediction 
scheme. 

 

 

Fig. 6 Smoothing constant estimates and SACt (DRAM) 

◎ New data available 
◎ Calculate new SACt+1 and SAC trend (SACt+1-SACt)
◎ Use the SAC trend to estimate the new α at the next period

END

START

◎ Given the Initial α i by Steepest-Descent Search
◎ Calculate SACt

 

Fig. 7 Dynamic product mix estimate scheme 

EVALUATION OF PROPOSED METHODOLOGY 

In order to evaluate the proposed product-mix prediction 
scheme, we use proportion mean squared error (PMSE): 
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as the evaluation measure and compare the performance 
against two conventional proportion estimate methods: 
methods A and B.  

In addition to the simulated DRAM demands, actually 
semiconductor demand data as shown in Fig. 6 is also tested.  
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Fig. 8 Actual semiconductor demands 

It is diffcult to observe the relationship among the three 
individul demands from Fig. 8. However, the product-mix 
proportions (Fig. 9) show clearly the relationship among these 
three products. 

 

Fig. 9 Product-mix of actual semiconductor demands 

The results (Table 1) show significant improvements by the 
proposed method (PLC Indicator Dynamic EWMA, PIDE) in 
both the simulated and actual demand cases. 

S im u la te d  D a ta

A c tu a l D a ta

C o n v e n tio n a l  M e th o d T o ta l  P M S E
M e th o d -A 0 .0 7 2 7 4 0
M e th o d -B 0 .0 6 4 6 6 4

P ID E  M e th o d  T o ta l  P M S E
P ID E 0 .0 0 1 9 6 2

C o n v e n ti o n a l  M e th o d T o ta l  P M S E
M e th o d -A 0 .0 0 9 7 6 6
M e th o d -B 0 .0 1 1 4 6 7

P ID E  M e th o d  T o ta l  P M S E
P ID E 0 .0 0 7 8 1 3  

Table 1 Evaluation Results 
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