
Int J Adv Manuf Technol (1999) 15:907–913
 1999 Springer-Verlag London Limited

Configuration Design of Complex Integrated Manufacturing
Systems

Y.-C. Chou
Graduate Institute of Industrial Engineering, National Taiwan University, Taipei, Taiwan

The configuration design of complex integrated manufacturing
systems such as semiconductor wafer fabricaton plants is a
multi-objective, multi-criterion design problem. This paper
describes a qualitative reasoning methodology for the auto-
mated configuration design of manufacturing systems. The
amounts, incremental qualitatives, and rates of change that
make up the components of a qualitative model are first
derived. They provide a formalised body of knowledge concern-
ing the relationship between throughput, flow-time and use. A
computation procedure and a system architecture that use an
embedded queueing network program are then described. The
methodology enhances the coherence of rule-based design
knowledge, and can automatically generate a configuration
design that satisfies specified performance requirements.

Keywords: Automated design; Configuration design; Qualitative
reasoning

1. Introduction

Over the past several decades, the application of computer
technologies in manufacturing system integration has created
new large-scale systems. Flexible manufacturing systems
(FMSs) are an early example of such integrated systems.
Semiconductor wafer fabrication plants (i.e. fabs), comprising
several hundred machines that are shared by hundreds of
process steps and linked by automated material handling sys-
tems, are more recent examples. Characterised by complex
material flow and alternative routeings, both types of system
have several prominent design and planning issues [1]. In
addition, in a dynamic business environment these systems
must be continuously redesigned or modified in order to achi-
eve specified performance goals in machine use, flow-time and
work-in-process (WIP). For example, flow-time reduction is a
continuous endeavour in many wafer fabs [2,3]. As the scale,
complexity, and continuous nature of the design activity have

Correspondence and offprint requests to: Y.-C. Chou, Graduate Insti-
tute of Industrial Engineering, National Taiwan University, 1 Roosevelt
Road, Sec. 4, Taipei, Taiwan 106. E-mail: ychouKccms.ntu.edu.tw

increased, there is a strong need for design automation and
software tools.

Implementation of automated design requires a design pro-
cess model. Designing manufacturing systems could be viewed
as made up of a sequence of activities or tasks. Eversheim
and Herrmann advocated a planning procedure consisting of
the following steps: selection of system structure; determination
of machines; determination of automation level; material flow
layout; and development of information and control systems
[4]. Similarly, Stecke enumerated and then grouped design
decisions into two phases: initial specification decisions; and
subsequent implementation decisions [1]. Although the number
of steps differs, they and other researchers share the perspective
that can be called a task model of design. Alternatively, system
design can be viewed as an iterative process of incremental
refinement or solution patching [5]. Following this process
perspective, the same design decisions are made at multiple
levels of abstraction. These two perspectives are complemen-
tary. Following the task model, researchers have developed
many decision-making tools for individual design tasks [6–10].
The process perspective, which is rooted in design automation
research, is more recent and has accumulated far fewer
research results.

Three design stages can be identified in manufacturing
system design: conceptual design; configuration design; and
detailed design. In conceptual design, product demands, pro-
cessing requirements, and machine and tooling capabilities are
analysed. Machine specifications, tooling concepts, material
handling needs, and system structure are then determined or
developed. Design evaluation is primarily guided by processing
requirement- and capability-related criteria. System specifi-
cations resulting from conceptual design are typically expressed
as constraints. In the configuration design stage, resources and
their quantities must be selected or developed through an
iterative process for each feasible configuration. Design criteria
are primarily related to throughput, cycle time, WIP and tooling
inventory, product quality assurance, and system flexibility. In
the detailed design stage, system components are integrated
and material flow, space requirements, facility layout, and other
logistic, operation and scheduling issues are addressed.

A large body of models that provide aids to configuration
design now exist in the literature. The most significant models

908 Y.-C. Chou

are probably queueing network models that correlate material
flowrates between workstations of a manufacturing system, and
calculate throughput rates, product flow times, and machine
use [9]. Suri and Hildebrant gave an example of using one
such model in designing an FMS [11]. The configuration
variables included in his model are the number of machines,
pallets, and material transporters. The performance measures
are concerned with throughput, use, product flow time, and
waiting time. To configure a system, several iterations of
analysis using the model are usually required. In each iteration,
the output from the previous iteration is analysed and the
system configuration is modified.

Mathematical programming techniques have also been
applied to various configuration problems. Some of these mod-
els have been collected and published and there are already
several reviews [7,10]. Therefore, a review of the models will
not be repeated here. These models typically have discrete
variables for alternative machines, tools, parts, fixtures, oper-
ations, and other equipment. The resulting formulations are
usually 0–1 nonlinear programs, and the solution procedure
amounts to finding a configuration in the configuration space
while optimising a certain single-valued objective function
[11,12].

This paper adopts a process view of design. The objective
is to develop a design methodology that accommodates human
reasoning as well as the design process in a design environ-
ment. The following functional requirements are stipulated for
the methodology and environment:

1. They must support the resolution of multiple objectives
and criteria.

2. They must support an iterative refinement process of design
and human interaction.

3. They must be based on the premise that design variables and
their values are too numerous to be efficiently enumerated.

In the remainder of this paper a qualitative reasoning model for
the automated configuration design of integrated manufacturing
systems is presented. In Section 2, the characteristics of inte-
grated systems are discussed and the configuration design
problems are defined to establish a background for this work.
In Section 3, concepts of qualitative reasoning as related
to configuration design are described. A configuration design
methodology is then described in Section 4. The methodology
has been implemented in the expert system shell language
CLIPS and the C language, using an embedded queueing
network model for system performance evaluation. Software
system architecture for a design environment is described in
Section 5.

2. Description of the Problem

An integrated manufacturing system refers to an automated
production system in which programmable machines are linked
by material handling equipment, and production is controlled
by a near real-time shop information system. There are a
number of stations, and each station contains one or more
machines of the same type. Performance requirements usually

include throughput, flow-time and machine use. These require-
ments are frequently expressed as numerical (upper or lower)
bounds.

There are three aspects of the relationship between through-
put, lead-time and WIP in the steady state [13]. First, the
throughput of a manufacturing system increases with an
increase in WIP. The increase, however, is a diminishing effect.
When WIP reaches a certain level, the increase in throughput
due to an increase in WIP will begin to level off. A second
aspect of the integration effect is concerned with WIP and
average flow-time. As WIP is increased, average flow-time
will also increase. At the point where the effect of WIP on
throughput levels off, the system is considered to be fully
loaded. A further increase in WIP will only create more
congestion, which will not significantly increase throughput but
will significantly increase flow-time. The third aspect of the
integration effect concerns the relationship between throughput
and flow-time. An increase in throughput, if achieved by
increasing the capacity of machines, will be accompanied by
a decrease in flow-time. However, if an increase in throughput
is achieved by increasing the WIP, flow-time will also increase.
The above-mentioned relationships are highly nonlinear and
are not exhaustive.

The criteria for configuration design usually interact and
conflict with each other. There are also multiple means of
achieving each goal. For instance, to increase production
throughput, more machine resource could be added, special
tooling could be developed, or process routeing could be
modified to reduce the workload of the bottleneck machines.
Because excessive WIP inventory and lead-time slacks are
deliberately removed from integrated systems, such interaction
between goals and means becomes more acute and has been
characterised as the integration effect [14,15].

Configuration design is concerned with determining the type
and quantity of manufacturing resources in each station, the
WIP level, transport capacity, and other secondary resources.
The problem of configuration design is one of finding a feasible
solution in a potentially unbounded solution space such that
performance requirements are satisfied.

Following the usual convention, machines, material handling
equipment, and secondary resources will be called servers,
transports, and tools, respectively. In addition, work-in-process
inventory is also considered as a resource.

System Configuration Variables

A system configuration can be expressed as a vector of system
parameters, including:

Si the number of servers at stationi, i = 1,. . .,M, where station
M is the transport
N the level of work-in-process, measured in pallets or
cassettes
V delivery rate of a transport

Performance Measures

The parameters that describe system behaviour are:

P aggregate throughput
Ui server use at stationi, i = 1,. . .,M−1

Configuration Design of Manufacturing Systems 909

UM use of the transport
Wi waiting time at stationi, i = 1,. . ., M−1
WM queue time at the transport station

Performance Requirements

These are expressed as lower and upper bounds:

Pmin minimum throughput
{ Ui} min minimum server use at stationi, i = 1, . . ., M−1
{ UM} max maximum transport use
{ Wi} max maximum waiting time at stationi, i = 1,. . .,M−1
{ WM} max maximum transport waiting time

Process Data and Derived Data

wi machine processing rate at stationi

qi probability that a part is delivered to stationi by the trans-
port

Note that flow-time of a product type can be computed from
the summation of processing time, queue time and transpor-
tation time for all stations that are visited by the product.
Performance requirements are specified for stations rather than
for products without loss of generality.

3. Qualitative Reasoning

Qualitative reasoning seeks to formalise the common sense
way of reasoning about physical systems. Its applications typi-
cally deal with physical systems with time-dependent variables
governed by physical laws [16]. In this paper, qualitative
reasoning is applied in the problem domain in which decision
variables are not time varying but instead are related by
complex relationships. This characteristic will affect the way
incremental qualitatives (see below and the Appendix) are
derived. Therefore, the model presented in this paper is differ-
ent from those that deal with physical laws. Nevertheless, this
work is based on that of Forbus [17], de Kleer [18], and de
Kleer and Brown [19].

A qualitative reasoning model has three types of qualitative
values that must be defined: amount, incremental qualitative,
and rate of change.

1. An amount is aqualitative valueassociated with a parameter
of a physical system. An amount is usually represented as
an interval or partition, instead of a real number, in which
the quantitative valueof the parameter is supposed to lie.
In this paper, the qualitative values of system performance
measures such as throughput, transport waiting time, server
use and station waiting time are represented as amounts.
These amounts are either [+] or [−] in value, indicating that
the performance requirements have been met or not. Both
performance measures and system configuration parameters
will be depicted by their variable names in brackets. For
example, if the throughputP of a certain configuration is
higher than the required goal, it will be given as: [P] = [+].

2. An incremental qualitative is a direction of change in the
value of an amount. An incremental qualitative can be either

Table 1.Qualitative calculus.

[Y] [Y]
[X] + [Y] [X] * [Y]

[−] [+] [−] [+]

[−] [−] [?] [−] [+] [−][X] [X][+] [?] [+] [+] [−] [+]

increasing (+), decreasing (−), constant, or indeterminate
(?). In this paper, the direction of changes in performance
values owing to changes in system configuration parameters
is modelled as an incremental qualitative. The incremental
qualitative of a variable is represented by the name of the
variable with a prefix letter “d” and bracket enclosures. For
instance, the factual knowledge that throughput will increase
or decrease with the WIP level can be expressed by the
incremental qualitative equality [dP] = [dN], indicating that
the direction of change inP is the same as the direction
of change inN.

3. A rate of change is the qualitative value of a change that
affects an amount. Rates of change are used to “quantify”
incremental qualitatives by dividing possible values of a
variable into intervals and then specifying what causes a
performance value to be in one interval or another. For
example, the knowledge that an increase in WIP level will
yield a higher increase in throughput when the system is
not saturated than when it is saturated can be expressed by:

[dP/d Si] = [High], when stationi is [bottleneck]
[dP/d Si] = [Low], when stationi is [not bottleneck]

where [High] and [Low] are two defined values for the rate
of change [dP/d Si].
This qualitative reasoning model is a computation model
for predicting the performance change resulting from a
system configuration change. Table 1 is a calculus for this
computation model. A brief example of using these three
types of qualitative values and the calculus is shown in
the following.

Example. Setting the WIP level to satisfy the goals on
throughput

Assume the following knowledge base exist: (facts or rules)

1. [P] = [−]
2. [dP] = [dN]
3. [dP/dN] = [Low], if system is highly saturated
4. [dP/dN] = [Medium], if system is lightly saturated
5. [dP/dN] = [High], if the system is not saturated

Fact 1 indicates that the goal on throughput is not yet met.
From 2, it is known that throughput can be raised by increasing
the level of WIP (given [dP] = [dN], and by setting [dN] = [+]).
However, it is not certain if all increases in WIP will raise
the throughput to such a level as to meet the requirement.
This indetermination is verifiable by the calculation:
[P] + [dP] = [−] + [+] = [?]. Rules 3, 4 and 5 are knowledge

910 Y.-C. Chou

about the rate of changes. They specify the relative rates by
which throughput will increase when the WIP is increased
under various levels of bottleneck use. They can be used to
partially resolve this indetermination. Therefore, when the sys-
tem is not saturated, it is advisable to explore the course of
action of increasing WIP level. In contrast, if the system is
highly saturated, it is not advisable to increase WIP as the
chance of meeting the throughput goal is slight.

4. A Qualitative Reasoning Methodology

The general framework for applying qualitative reasoning to
configuration design has been described in previous sessions.
In this section incremental qualitatives and the rates of change
will be derived. An integrated manufacturing system can be
regarded as a network of queues and its performance is suscep-
tible to analysis by queueing theory. Although queueing net-
work models usually make simplifying assumptions, substantial
knowledge about the behaviour of queueing networks has been
accumulated in the literature. This knowledge should and can
be used advantageously in the computation framework of quali-
tative reasoning.

In this work, CAN-Q, a closed queueing network model
[20], is used to evaluate the performance of systems. CAN-
Q assumes a central transport system, first-come-first-served
discipline, infinite queue length and exponential distribution
for the servers. It aggregates all work parts into one type.
Performance measuresP, Ui andUM can be expressed as linear
functions of the workload for the material handling station
(LM) [20]:

P = qM V UM SM = qM V LM (1)

Ui =
qi V UM SM

wiSi

=
qi V LM

wiSi

(2)

UM =
LM

SM

4.1 Incremental Qualitatives

Some incremental qualitatives can be obtained by taking the
derivative of the relationship between system performance mea-
sures and system configuration parameters. For example, in
Eq. (1), qM is a constant (K) for a given problem, therefore

dP
dN

= K V
dLM

dN

Since the constantK and delivery rateV are positive, [dP/dN]
= [+]*[+]*[d LM/dN]. From Table 1, [dP/dN] = [dLM/dN]. This
implies that the directions of the change inP and LM due to
a change inN are the same. There are other relationships
between amounts that are generally true based on our knowl-
edge of the behaviour of queueing networks but which cannot
be analytically derived. For instance, when one machine is
added to a station, the overall workload for the station will
increase but the average machine use will decrease. The relation

[dUi/dSi] = [−]

cannot be analytically derived by taking the derivative, but it
is believed to be true. This category of relationships has been
verified using simulation and is also expressed as incremental
qualitatives. The detailed derivation or construction of
incremental qualitatives can be found in the Appendix and the
results are summarised in Table 2.

4.2 Rates of Change

Among configuration variables, the number of servers has the
greatest effect on system performance. In contrast, bothN and
V have a less significant effect on system throughput but have
a significant effect on flow-time.

4.2.1 Rates of Change in Throughput and Server Use

When the goals of throughput are not met, it is logical to
consider increasing the number of servers at the bottleneck
station. Nevertheless, changing the number of machines at non-
bottleneck stations should not be ruled out as an alternative.
An argument based on the theory of constraints could be made
in this regard. Non-bottleneck stations are feeding stations to
the bottleneck station and increasing their capacity could lead
to an increase in throughput. When machines at non-bottleneck
stations have a lower cost, it may be more cost-effective to
add capacity to a non-bottleneck station rather than to the
bottleneck station. Therefore, in this configuration model, the
effect of non-bottleneck stations as well as the bottleneck
station on throughput is evaluated. For this purpose, an estimate
for dP/dSi for non-bottleneck machines is needed.

From Eqs (1) and (2), the rates of change in throughput
and use will be proportional to that of the traffic loadLM.
Therefore, it is convenient to compute the rates of change in
LM instead ofP or UM directly. The system configuration state
can be represented by a vectorCS= (V, N, Si for all i). Given
a configuration stateCS′ and a modified configuration state
CS″, define the relative rate of increase inLM as:

DLM =
LM(CS″) − LM(CS′)

LM(CS′)
(3)

The difference betweenCS′ and CS″ is merely one more or
one less machine in one of the stations. Figure 1 shows simul-
ation results that correlateDLM with the use of non-bottleneck
machines. Simulation runs show that when a machine is added
to a non-bottleneck station, the resultant increase inLM is an
exponential function of the use at that station. This qualitative
information will be modelled using regression, i.e.DLM = ai

Ueii , and used to estimate the rate of change dLM. This will be

Table 2. Incremental qualitative (i = 1,. . .,M−1,i ± k).

dV = [+] dN = [+] dSi = [+] dSk = [+] dSM = [+]

dP [+] [+] [+] [+] [+]
dUi [+] [+] [−] [+] [+]
dUM [−] [+] [+] [+] [−]
dWi [+] [+] [−] [+] [+]
dWM [−] [+] [+] [+] [−]

Configuration Design of Manufacturing Systems 911

Fig. 1.Rate of change inDLM.

further explained in Section 5. The rate of change for the
bottleneck station is determined by extrapolation. That is, for
a bottleneck station withSi servers,

DLM = LM(CS′)/Si (4)

4.2.2 Rates of Change for Waiting Time

The rate of change in queue time at each station could be
estimated using Little’s law and Eq. (3). An integrated system
can be modelled as a queueing network and the decomposition
approach that separates the analysis of the network into node
and network levels has become a standard and well-accepted
technique [21]. By this approach, each station is analysed
separately and characterised by the first two moments of its
interarrival times at the node level. The interdependency of
these two moments is then captured in the analysis of inter-
station traffic flow at the network level. TheDLM in Eq. (3)
in essence represents the increase in arrival rate to each station.
From queueing network theory, it is known that the waiting
time at stationi is (for M/M/c):

Wi =
(SiUi)Sip(0)

Si!Siwi(1 − Ui)2

p(0) = F (SiUi)Si

Si!(1 − Ui)
+ OSi−1

n=0

(SiUi)Si

n! G−1

That is,Wi is a function of bothUi andSi and can be expressed
as Wi(Ui,Si). Assuming a constant WIP level, when a machine
is added to stationk, the change inWi can be approximated
using the following formula:

DWi = Wi((1 + dLM)Ui,Si) − Wi(Ui,Si) for i ± k (5)

DWi = Wi((1 + dLM)Ui,Si + 1) − Wi(Ui,Si) for i = k (6)

4.3 Computation Processes

The configuration design process is regarded as a search pro-
cess guided by qualitative reasoning. At each step of the
process, there is a configuration stateCS and its corresponding
performance statePS. A number of candidate moves are gener-
ated and characterised based on qualitative reasoning. These
candidate moves are then explored using standard search stra-
tegies of rule-based systems (see Section 5). In the following,
elementary computation operations of the search process are
described, followed by an example:

1. Generate a good initial configuration. An initial configur-
ation is generated using static capacity requirements and
the following constraints:

Si .
qiPmin

Wi qM

{ UM} max qiV SM

{ UM} min wi

. Si ∀i

2. Apply incremental qualitatives. Using qualitative calculus,
those performance state variables that have a [+] value will
satisfy the requirements; those variables that have a [−]
value will not meet the requirement. If there are any indeter-
minate variables, invoke rates of change analysis.

3. Apply the rate of change analysis. If the indeterminate
variable is throughput, apply the regression formula (Eqs.
(3) or (4)) to obtain a prediction. If the indeterminate
variable is waiting time, apply the incremental waiting time
formula (Eqs. (5) or (6)).

4. Evaluate a new configuration state. The CAN-Q program
is used.

In Steps 2 and 3, more than one improvement move may be
identified. These moves are next classified in order to choose
the more promising ones. Candidate moves are labelled with
a two-letter uncertainty grade symbol. The first letter is used
to indicate the confidence of performance extrapolation and
the second letter will indicate whether the performance goal
would be satisfied or not after the move is taken. The set of
symbols and their meaning are:

CM Certainly Meet

CN Certainty Not-meet

AM Almost Meet
AN Almost Not-meet

PM Probably Meet

PN Probably Not-meet

In Step 2, if there are no indeterminate variables, the extrapol-
ation is certain and the associated moves are labelled with the
letter C, followed by an M or N. In Step 3, the extrapolation
is less certain. The moves are labelled with either letter A or
P, depending on whether the expected improvement exceeds
50% of the required improvement.

Example. This computation associated with a search step is
outlined in Fig. 2. The initial (or given) performance state is
([+], [−], [+], [−], [+]). The action under evaluation is to add
one machine to Station 1 (i.e. dS1 = [+]). The characterisation
of this move is (CM, CN, AM, AM, PM).

Fig. 2. An example of performance prediction.

912 Y.-C. Chou

Fig. 3.System architecture.

5. System Architecture

This qualitative reasoning model of configuration design has
been implemented using the expert system shell language
CLIPS [22] and the C language. The system architecture is
shown in Fig. 3. The core of the system is implemented in
CLIPS to make use of its symbol manipulation and search
strategy capability. The initial configuration generation, the
CAN-Q program and the qualitative reasoning modules are
implemented as embedded procedures in the C language, and
can be called by the rule-based system. In the design process,
each system configuration is evaluated using CAN-Q. If all
performance goals and constraints are satisfied, the design
process terminates. Otherwise, child nodes of the configuration
are generated. The performance of each child node is estimated
and characterised using qualitative reasoning logic. The charac-
teristics are used by the meta-planner to compute a utility
value to guide the search process. If after a certain number of
iterations, a feasible solution is still not found, the meta-
planner will conclude that the performance goal and constraints
are too tight and must be relaxed. In the current implemen-
tation, the regression formula for dLM is obtained by exploring
the neighbourhood of the initial configuration. This is done by
data fitting at the beginning of a design session after the initial
configuration is generated.

6. Conclusion

There are unpredictable behaviour problems such as cycling
of rule firing if rule-based systems are used in automated
design and if the rules (i.e. the knowledge base) are not
coherent. In this paper, a qualitative reasoning model is
described for organising knowledge about system configuration
and queueing-network related system performance measures,
including throughput, flow-time, and use. A design process
methodology is presented for multi-objective, multi-criteria con-
figuration design problems using rule-based systems. The meth-
odology enhances the coherence of rule-based design knowl-
edge, and is able to generate automatically a satisfactory
configuration design that satisfies specified performance require-
ments. It is a basis for automated configuration design of
complex, integrated manufacturing systems such as semi-
conductor wafer fabs.

Acknowledgements

This work is partially funded by National Science Council of
R.O.C. under NSC–87–2622–E002–011 and NSC–88–2212–
E002–062.

References

1. K. E. Stecke, “Design, planning, scheduling, and control problems
of flexible manufacturing systems”, Annals of Operations
Research, 3, (3), pp. 51–60, 1985.

2. Friedrich Bobel and Olivier Ruelle, “Cycle time reduction program
at ACL”, IEEE/SEMI Advanced Semiconductor Manufacturing
Conference and Workshop, pp. 165–168, 1996.

3. Mani Janakiram, “Cycle time reduction at Motorola’s ACT Fab,”
IEEE/SEMI Advanced Semiconductor Manufacturing Conference
and Workshop, pp. 465–469, 1996.

4. W. Eversheim and P. Herrmann, “Recent trends in flexible auto-
mated manufacturing”, Journal of Manufacturing Systems, 1(2),
pp. 139–147, 1982.

5. David G. Ullman, “A taxonomy for mechanical design”, Research
in Engineering Design, 3, pp. 179–189, 1992.

6. M. Hausknecht, “Expert system for configurations planning of
flexible manufacturing systems”, Proceedings, 7th International
Conference on Flexible Manufacturing Systems, IPF Publication,
pp. 179–190, 1988.

7. Andrew Kusiak, Flexible Manufacturing Systems: Methods and
Studies, North-Holland, 1986.

8. J. W. Mellichamp, O. Kwon and A. A. Wahab, “FMS designer:
An expert system for flexible manufacturing system design”, Inter-
national Journal of Production Research, 28 (11), pp. 2013–
2024, 1991.

9. Janes L. Snowdon and Janes C. Ammons, “A survey of queueing
network packages for the analysis of manufacturing systems”,
Manufacturing Review, 1(1), pp. 14–25, 1988.

10. K. E. Stecke and R. Suri (ed.), Proceedings, Third ORSA/TIMS
Conference on Flexible Manufacturing Systems: Operations
Research Models and Applications, Elsevier, 1989.

11. Rajan Suri and Richard R. Hildebrant, “Modeling flexible manufac-
turing systems using mean-value analysis”, Journal of Manufactur-
ing Systems, 3(1), pp. 27–38, 1983.

12. Yves Dallery and Yannick Frein, “An efficient method to deter-
mine the optimal configuration of a flexible manufacturing
system”, Proceedings, Second ORSA/TIMS Conference on Flex-
ible Manufacturing Systems: Operations Research Models and
Applications, pp. 269–282, August 1986.

13. Ulrich A. W. Tetzlaff, “Optimal equipment selection for flexible
manufacturing systems using closed queueing network theory”,
Proceedings, Third International Symposium on Robotics and
Manufacturing: Research, Education and Applications, ASME,
pp. 685–690, 1991.

14. Gabriel R. Bitran, William P. Peterson and Devanath Tirupati,
“Some recent advances in capacity planning for discrete manufac-
turing systems”, Modern Production Management Systems, North
Holland, pp. 201–213, 1987.

15. John E. Lenz, Flexible Manufacturing, Marcel Dekker, New
York, 1988.

16. B. C. Williams and J. de Kleer, “Qualitative reasoning about
physical systems: a return to roots,” Artificial Intelligence, 51,
pp. 1–9, 1991.

17. K. D. Forbus, “Qualitative reasoning about physical processes,”
Proceedings IJCAI-81, Vancouver, Canada, pp. 326–330, 1981.

18. J. de Kleer, “The origin and resolution of ambiguities in causal
arguments”, Proceedings IJCAI-79, Tokyo, Japan, pp. 197–204,
1979.

19. J. de Kleer and J. S. Brown, “A qualitative physics based on
confluences”, Qualitative Reasoning about Physical Systems, The
MIT Press, Cambridge, MA, 1985.

Configuration Design of Manufacturing Systems 913

20. J. J. Solberg, “A mathematical model of computerized manufactur-
ing systems”, Proceedings of the 4th International Conference on
Production Research, Tokyo, pp. 1265–1275, August 1977.

21. D. P. Connors, Gerald E. Feigin and David D. Yao, “A queueing
network model for semiconductor manufacturing”, IEEE Trans-
actions on Semiconductor Manufacturing, 9(3), pp. 412–427, 1996.

22. J. C. Giarratano, CLIPS User’s Guide, NASA, Athens, January
1991.

Appendix. Derivation of Incremental
Qualitatives

It should be noted that in traditional qualitative reasoning
models, the independent variable is always the time, whereas
in this configuration design application, the independent vari-
ables are system configuration parameters. The following
incremental qualitatives are either analytically derived or con-
strued on the basis of experience and verified via simulation.
In the CAN-Q program, performance measures are related by
the following equalities:

P = qM * V * LM = k * V * LM

Li = (qi * V * LM)/wi = ki * V * LM

Ui = Li/Si

where k and ki are constants.

1. Throughput (P):
(a) dP/dSM = k * V * dLM/dSM

dP/dSM = [+] * d LM/dSM

Con 1: [dP/dSM] − [dLM/dSM] = [0]
(b) dP/dSi = [+] * dLM/dSi

Con 2: [dP/dSi] − [dLM/dSi] = [0]
(c) dP/dV = k * { LM + V * dLM/dV} = [+] * {[+]+[+] *

dLM/dV} = [+] + dLM/dV
Con 3: [dP/dV] − [dLM/dV] = [+]

(d) dP/dN = k * V * dLM/dN
Con 4: [dP/dN] − [dLM/dN] = [0]

2. Server Utilisation (Ui):
The server utilisation isUi = (ki * V * LM)/Si (i = 1,. . .,M−1)
(a) dUi/dSk = (ki * V * dLM/dSk)/Si

Con 5: [dUi/dSk] = [dLM/dSk] (i ± k)
(b) dUi/dSi = (ki * V/Si) * {d LM/dSi − LM/Si} = [+]*{(d LM/

dSi) − [+]}
Con 6: [dUi/dSi] − [dLM/dSi] = [−]

(c) dUi/dV = (ki/Si) * { LM + V * dLM/dV} = [+] *
{[+]+[+] * dLM/dV} = [+] + dLM/dV
Con 7: [dUi/dV] − [dLM/dV] = [+]

(d) dUi/dN = (ki * V/Si) * dLM/dN
Con 8: [dUi/dN] = [dLM/dN]

3. Transporter Utilisation (UM):
UM = LM/SM

Con 9: [dUM/dSM] − [dLM/dSM] = [−]
Con 10: [dUM/dSi] = [dLM/dSi]
Con 11: [dUM/dV] = [dLM/dV]
Con 12: [dUM/dN] = [dLM/dN]

The following confluences are construed on the basis of queue-
ing theory but are verified by simulation.

Con 13: [dLM/dN] = [+]
Con 14: [dLM/dSi] = [+], (i = 1,. . .,M−1)
Con 15: [dLM/dV] = [−]
Con 16: [dLM/dSM] = [+]
Con 17: [dWM/dN] = [+]
Con 18: [dWM/dV] = [−]
Con 19: [dWM/dSi] = [+], (i = 1,. . .,M−1)
Con 20: [dWM/dSM] = [−]
Con 21: [dWi/dN] = [+], (i = 1,. . .,M−1)
Con 22: [dWi/dV] = [+]
Con 23: [dWi/dSM] = [+]
Con 24: [dWi/dSi] = [−]
Con 25: [dWi/dSk] = [+], (i ± k)

There is indeterminacy between Con 3, Con 6, and Con 9.
For instance,

Con 3: [dP/dV] − [dLM/dV] = [+]
Con 7: [dUi/dV] − [dLM/dV] = [+]
Con 15: [dLM/dV] = [−]

From Con 3 and Con 7, [dP/dV] = [dUi/dV]. However, from
Con 3 and Con 15, [dP/dV] = [+] + [dLM/dV] = [+] + [−] = [?].
This indeterminacy has been resolved using simulation. The
results are:

Con 26: [dP/dV] = [+]
Con 27: [dUi/dSi] = [−]
Con 28: [dUM/dSM] = [−]

