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Economic Analysis and Optimization of Tool
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Abstract—The tool portfolio of a plant refers to the makeup, in
quantity and type, of processing machines in the plant. It is deter-
mined by taking into consideration the future trends of process
and machine technologies and the forecasts of product evolution
and product demands. Portfolio planning is also a multicriteria
decision-making task involving tradeoffs among investment cost,
throughput, cycle time, and risk. Tool portfolio planning is a
complex task that has strong bearing on manufacturing efficiency.
In the first part of this paper, a multicriteria economic decision
model is presented for optimal configuration of the portfolio and
to determine the optimal factory loading. The second and third
parts of the paper contain applications of the model. If plants are
closely located or have a twin-plant design, portfolio planning at
multiple plants can be integrated to enhance the overall effective-
ness of portfolios. In the second part, a novel methodology for
arbitrating capacity backup between plants is described. Because
the economic model is constructed upon a valuation of both cycle
time and throughput, it is a suitable method for the evaluation
of cycle time reduction projects. The application procedure is
outlined in the third part.

Index Terms—Configuration design, cycle time reduction,
resource portfolio planning.

I. INTRODUCTION

T HE tool portfolio of a plant refers to the makeup, in quan-
tity and type, of processing machines in the plant. Tool

portfolio planning in the semiconductor industry is an important
task that has strong bearing on manufacturing efficiency. Be-
sides the implication of high investment cost of semiconductor
processing tools, there are several other reasons. First, the tool
portfolio is determined by taking into consideration the trends
of process and machine technologies and the forecasts of prod-
ucts and product demands. Due to rapid changes in the tech-
nology environment, there is a high uncertainty of mismatch
between actual demands and the right types of capacity. Be-
cause the market environment is volatile, there is a high risk
of under- or over-capacity. The tool portfolio must be evaluated
and fine-tuned on a continuous basis. Also, a wafer fabrication
plant is a complex manufacturing system that contains several
hundred machine tools and the manufacture of a product re-
quires several hundred processing steps. Because the tools and
storage systems in a plant are tightly interconnected, by auto-
mated material transport systems and by computer control, a
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wafer plant exhibits complex queuing network behaviors. Not
only is its throughput complex to estimate, but there are other re-
quirements such as cycle time and work-in-process (WIP) level
which should be simultaneously taken into consideration in per-
formance evaluation.

There are three important issues in portfolio planning, namely
performance evaluation, configuration design, and risk analysis.
A tool portfolio can be represented as an ordered set of tool
quantities, , where is the index
for tool groups. The number of tool groups is in the order
of one hundred. Tool groups are not always distinct. A tool
group can be used as alternative tools for some other tools
after setup operation. The solution space is very large for
configuration design, especially when the tool portfolios of
multiple time periods under multiple demand scenarios are to
be determined [1], [13].

Portfolio planning requires a capacity model of the plant as a
basic tool for performance analysis. Static capacity modeling,
queuing capacity modeling, and simulation are three common
modeling techniques of capacity analysis. Static capacity
models are the most popular because of its ease of use. A static
model may take into account all or part of the capacity factors:
tool availability, tool efficiency, process yield, lead-time offset,
and changeover time loss [3]. The availability, efficiency of
serial tools, and process yield can be easily included in the
calculation logic. The other factors are more involved and have
been the focuses of several recent studies. The loading policy of
batch machines has a strong effect on machine utilization and it
has been studied extensively. Depending on whether job arrival
information is utilized or not, loading policies can be classified
as either static [5] or dynamic [6], [7], [14]. The efficiency
of batch tools can be estimated using regression analysis of
re-entry times and work release quantity or by formulas [3], [7].
The changeover loss can be estimated from historical data of
the occurrence times of tool idleness [10]. The lead-time offset
was shown to be a significant factor in computing workload
[4]. Static models are very useful; the major shortcoming is the
lack of flow time information.

Queuing models are used in the analysis of the steady state.
They provide the flow time, utilization, and WIP performance
information. Programs based on queuing capacity models
require a very short time to run and can provide results with
modest accuracy. It was reported that the accuracy of queuing
models as compared with actual factory operation data was
within 5% to 10% for throughput and within 10% to 30% for
flow time [2]. Therefore, queuing capacity models are useful
tools for capacity planning. Simulation is usually used to
analyze operation dynamics at very detailed levels. In principle,
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simulation models can provide very accurate capacity informa-
tion. However, their construction and maintenance require very
significant effort, and their computer run time is usually long.
They are not suitable for early stages of portfolio planning,
in which many alternative portfolios need evaluating. Instead,
they should be used to verify and fine-tune the final portfolio.

The importance of portfolio configuration under demand
uncertainty has been well recognized in the literature. Because
capacity requirements are dependent on the product mixes,
Kotcher describes a heuristic procedure for identifying tool sets
that are prone to become bottleneck tools as the product mixes
are changed [8]. The loading of each tool set is first computed
based on a fixed product mix. Tool sets with high utilization are
selected for further sensitivity analysis under varying product
mixes. These tools are called capacity-constraining tools.
They are prioritized along with their triggering product mixes.
Swaminathan addresses the tool procurement decision over a
planning horizon of multiple time periods [13]. The uncertainty
of product demand is modeled by a set of demand scenarios
where each scenario reflects a possible set of demands for
different products and each scenario is associated with a
probability of occurrence. A large Integer Program model is
described that minimizes the expected stock-out cost over all
demand scenarios. The paper also presents two heuristics to
generate upper bounds and two relaxation methods to generate
lower bounds. A stochastic programming approach to capacity
planning under demand uncertainty has also been described
[1]. The uncertainty in demand is modeled by a set of demand
scenarios. The tool purchase, wafer starts, and work assignment
decisions are formulated as a very large mixed-integer program
of 2500 integer variables, 230 000 continuous variables, and
140 000 constraints.

Portfolio planning is a multicriteria decision task involving
tradeoffs among investment cost, throughput, cycle time, and
risk. The decision is complicated. Not only are there multiple
portfolios that will satisfy a specified set of production goals,
but also that each portfolio can be operated in a multitude
of load scenarios, yielding various combinations of multiple
performance measures. There is little literature on this tradeoff
analysis except by Ozawa [12]. Furthermore, most works
reported in the literature deal with how to determine the tool
portfolio using one method of workload allocation or another.
However, in capacity planning, the planner would also be
interested in knowing the risk that any capacity plan entails.
There is also very little treatment of this risk issue in the
literature.

The focus of this paper is on the multicriteria issue of port-
folio planning. An optimization and economic analysis model
and its applications are presented. The remainder of the paper
is organized as follows. In Section II, a procedure to generate
a multitude of feasible portfolios is described. Those portfolios
constitute a solution space. In Section III, an economic decision
model is presented for optimal configuration of the portfolio
and to determine the optimal operation loading. In Section IV,
a novel methodology for capacity sharing between plants is de-
scribed. Finally, the procedure to apply the economic model to
cycle time reduction projects is described in Section V, and con-
clusions are found in Section VI.

Fig. 1. Generating a solution space of efficient portfolios.

II. GENERATION OF THESOLUTION SPACE

In configuring a portfolio, marginal analyses of multiple per-
formance measures can be used to incrementally adjust tool
quantities [3], [12]. Suppose there is a set
of products to be produced and a set of dis-
tinct tool groups. The raw input data for portfolio planning are
the process routing for each product , tool information
for each tool group , and product demand ( ). The
tool requirements ( ) are computed based on processing time,
machine availability, process yield, and other factors, but for
brevity it can be expressed as

where is the standard processing time of producton tool
. Fig. 1 is a flow diagram for a two-stage procedure we used

to generate the solution space of portfolios. A static capacity
model is first applied to generate an initial solution. Because
the logic of static capacity models involves calculating the av-
erage workload, they provide the first order analysis of capacity
requirements. In comparison, both first-order and second-order
analyses are addressed in queuing analysis. (Queuing analysis
requires second-order statistics such as the variance of job ar-
rivals and job processing rates.) The resultant portfolio of static
capacity analysis is a lower bound portfolio. In the second stage,
the initial portfolio is evaluated using a queuing model to esti-
mate its performance in throughput, flow time, and utilization.
Based on the estimated performance, the portfolio is then mod-
ified by increasing the machine quantity of the bottleneck tool
group. This improvement process continues for a number of it-
erations to collect a set of efficient portfolios. There is more
than one strategy to improve any given portfolio. This will be
discussed next.

The bottleneck of a plant is a very complex phenomenon. A
common point of view is to take the stations with high utilization
as the bottlenecks. However, as evident in many studies, there
are other indicators or concepts of bottleneck that are rooted in
the synergistic effects of machine availability, utilization, and
maintainability [9], [11]. Because the available time of a tool
can be divided between regular utilization (), utilization due
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Fig. 2. Effectiveness of different bottleneck indicators.

to incapacitation ( ), and idleness, in this study three bottle-
neck indicators have been used to guide the search process of
portfolio generation, namely utilization (regular plus incapac-
itation), queuing delay, and remnant capacity (), where the
remnant capacity of a tool groupis defined as

for nonbatch tools

MaxBatchSize

MeanBatchSize
for batch tools.

The remnant capacity indicator has a value greater than or equal
to 1. It is a concept related to safety capacity buffer and a mea-
sure for the likelihood of being a bottleneck. (The lower the
value, the more likely.) To compare their effectiveness, the three
indicators have been used in the portfolio planning procedure
(the second stage). Each indicator is used as a strategy to im-
prove the current portfolio. Each strategy leads to a different set
of portfolios. It should be noted that there are many other pos-
sible strategies. For example, given a current portfolio (),
one can use the following cost-based formula to rank all tool
groups ( ):

Ratio
CycleTime CycleTime

Cost Cost

CycleTime CycleTime
Unit Cost of Tool

The results of this empirical study are partly shown in Fig. 2.
Using each indicator, a series of portfolios were generated. In
the figure, each point represents a portfolio for the same nominal
output level. Points to the lower left can be considered as more
cost effective. Three empirical conclusions can be drawn. First,
because the criteria are different, it is not absolute that the se-
ries merge to the same portfolio. There is substantial “variation”
between the response surfaces of the solution space. Second,
the queuing delay and remnant capacity indicators are more
computation-effective than the utilization indicator. Third, the
queuing delay indicator is more effective than the remnant ca-
pacity indicator.

Although each portfolio in Fig. 2 is characterized by a cycle
time and an investment cost, the performance level achievable
by a portfolio is not a single value but a range of values.
The cycle time as indicated in the figure is conditioned on a
throughput that is equal to the nominal capacity. As the opera-
tion loading is varied, the cycle time will change accordingly.
The cycle time under different throughput rates can be plotted
in the first quadrant of Euclidean space with two dimensions:
throughput and cycle time. Fig. 3 shows 20 plotted curves for
those portfolios of Fig. 2 that are generated using the queuing
delay indicator. Each curve represents the operation options
of a portfolio. These curves will be called option curves and
the space that all option curves lie in, i.e., the two-dimensional
(2-D) Euclidean space depicted in Fig. 3 will be called the
option space.

The above option curves are actually composed of discrete
points. For convenience, regression analysis is applied to
construct approximate option curve (OC) functions. It can be
observed that option curve functions are consistent with the
queuing delay phenomenon of general queuing networks. As
the throughput is increased, utilization and cycle time will
increase. We have found that the function form is
a good fit for the OC . This can be explained by the fact that a
wafer plant is a large queuing network and in queuing analysis
the formulas (such as that of M/M/1) that relate queuing delay,
service time, and utilization have this general form: queuing
delay (average service time)/(1-utilization).

III. A D ECISION MODEL FORPORTFOLIOOPTIMIZATION

Portfolio planning is a multicriteria decision-making task in-
volving tradeoffs among investment cost, throughput, and cycle
time. In this section, we will present a methodology for deter-
mining the optimal portfolio. While the value of throughput is
relatively easy to quantify, the benefit of cycle time is somewhat
subjective and is dependent on the business situation. Utility
function is a method used in economics to express the change
in perceived value that is assigned to goods as its consump-
tion quantity increases. Goods can be distinguished as regular
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Fig. 3. Option curves in the option space.

Fig. 4. Utility functions of throughput and cycle time.

goods and nonregular goods. For a rational decision maker, the
total utility will increase as the consumption quantity of reg-
ular goods increases. Regular goods also have the property that
their marginal utility decreases with the consumption quantity.
For portfolio planning, throughput can be regarded as regular
goods. In contrast, cycle time is not a regular goods because the
total utility decreases as the cycle time increases.

We use the following functional forms (shown in Fig. 4) to
model the utility of throughput ( ) and cycle time ( ):

where

where

where throughput and cycle time are normalized with respect
to the nominal capacity ( ) and the sum of raw processing
times (RPT). The parametersand affect the curvature of the
functions. Due to the physical limit to the throughput for any
portfolio, there is an upper bound to. Two questions have been
designed to aid the assignment of parametersand : 1) What
is the utility of a throughput that equals 100% of the nominal
capacity? 2) What is the utility of a cycle time that equals 3.5
times that of the raw processing time? If the answers are 0.95
and 0.9, respectively, then the corresponding value ofand
will be 2.9957 and 0.1245 (see Fig. 4).

The total utility function is defined as the weighted
sum of functions and using an assigned weight. A

Fig. 5. The total utility function and indifference curves.

method to determine the value of the weightwill be discussed
later

Using this representation, each option curve can be represented
as a hyper surface in the three-dimensional (3-D) space of

, , and . Fig. 5 graphs the total utility in the
axis of a 3-D plot for the case of . Each horizontal cross

section of the response surface represents an indifference curve
between throughput and cycle time (also shown in the right
panel). That is, the total utility of all points on an indifference
curve (IDC) is the same.

The optimal portfolio and its optimal operation loading can
be obtained by evaluating the total utility of all points in the op-
tion space, using data of Figs. 3 and 5, as follows. Each option
curve is a hyper surface in the 3-D space of Fig. 5. The inter-
section between the hyper surface and the response surface of
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the total utility function is a hyper curve. The optimal operation
loading is then the highest point of the hyper curve. This point
can be conveniently visualized in the– space as shown in
Fig. 6 (for three portfolios). The option curve is convex and the
indifference curves are concave. Therefore, for each portfolio,
there exists a tangential indifference curve that yields the max-
imum total utility. The tangent point is the optimal loading.

Alternatively, the optimal loading for each tool portfolio can
be solved mathematically by using the LaGrange multiplier
method as follows. The total utility function is regarded as
the objective function to be maximized and the option curve
as a constraint relating throughput and cycle time. For (4),
the objective function and the hyper surface for the
constraint OCS(, ) are of the forms

The LaGrange function is
, where is the multiplier. Take the partial deriva-

tive of the function with respect to and , and set the
derivatives to zero

(1)

(2)

(3)

Because the gradient of an option curve is a monotonically
increasing function of the throughput and that of an indifference
curve is a decreasing function, it can be easily derived that there
is only one optimal solution for each portfolio.

Once the optimal loading is determined for each portfolio, the
maximum utility that can be achieved with each portfolio is also
determined. The capital efficiency of a portfolio is defined as the
ratio of its maximum utility to its investment cost. The portfolio
with the highest investment efficiency is considered optimal.

We now return to the issue of setting the weight. Using the
above procedure, an optimal loading level is determined using
a required input of weight between two utility functions. The
weight is a subjective judgment of the relative utility between
cycle time and throughput. As shown in Fig. 6, if a weight
of 2 is used, the resultant optimal point will be ( ,

). The derivative of the OC function at that point is
equal to 14.606. Since the derivative can be interpreted as the
relative utility between cycle time and throughput, a logical im-
passe now surfaces. Thatequals to 2 means that the utility of
throughput is twice as important as that of cycle time. That the
derivative equals 14.606 means that the utility of throughput is
9.28 ( )
times more important than that of cycle time. In the following
we will show the existence of an equilibrium weight that is in-
herent to the option curve of each portfolio.

Fig. 6. The optimal operation loading.

We present two numerical examples; one starts with a small
value of and another with a large value of, to layout a frame-
work of analysis. Each example involves a number of iterations
to compute the optimal operation loading. The procedure is as
follows.

1) Iteration . Give an arbitrary initial weight .
2) Compute the optimal loading using as input. Cal-

culate the derivative of the OC at . Let the derivative be
.

3) Set .
4) If , stop. Otherwise, set and go

to Step 2).
The results for an initial weight of 1.0 and 8.0 are summa-

rized in Table I. In both examples, the weight converges to
a value of approximately 5.29. This convergence value is called
the equilibrium weight. Alternatively, the equilibrium weight
can be derived by adding two more constraints to the LaGrange
multiplier formulation

(4)

(5)

An OC function is constructed out of different loading levels
and corresponding flow times. Therefore, it implicitly repre-
sents tradeoffs between marginal throughput and flow time for a
fully loaded plant, given the specified utility functions. In prac-
tical application of this methodology, there could be other con-
straints on the value of. For example, the constraint
will impose a restriction such that the throughput is not greater
than 1.15 times that of nominal capacity. In practical applica-
tion, the weight should also be specified. In a business envi-
ronment that favors throughput to cycle time, one could use a
weight greater than the equilibrium weight. In contrast, if one
favors cycle time to throughput, a smaller weight could be used.

IV. CAPACITY SHARING AND BACKUP

In this section, we describe an application of the above
decision model. Some modern plants have a twin-plant design.
Two clean rooms are built side by side or stacked up one on
top of another to share common utility facilities. In still some
other occasions, plants are close to each other. The bottleneck
tools of two plants may not be the same at all times. The
proximity of plants allows capacity sharing to take place. If
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TABLE I
CONVERGENCE OF THEWEIGHT REVISION

tool capacity is shared between plants, the overall performance
will be improved. In this section, a novel methodology for
capacity sharing between plants is described.

The solid curve in Fig. 7 is the option curve of a plant. If
additional capacity of the bottleneck tools is obtained from a
partner plant, the option curve will shift downward to the right,
i.e., the dotted curve. Suppose the current operation loading is
at point O. With the borrowed capacity, either the throughput
could be increased from to (point A), or the cycle time
could be reduced from or (point C), or any other points on
the dotted curve will be achievable.

Table II shows the results obtained by applying the above
analysis to a set of industry data. It is shown that if 20 h of ca-
pacity of the bottleneck tool group is borrowed from the partner
plant, the throughput would be increased by 52 wafers per week,
or the cycle time could be reduced by 10 h. This methodology
provides an objective arbitration for capacity sharing between
plants.

The economic benefit of increased throughput can be com-
puted from the revenue that it brings in and the inventory cost
of WIP. From the queuing theory, it is known that a reduction in
cycle time would affect the level of throughput and WIP. There-
fore, we used an economic model to correlate the economic
benefit of cycle time to that of throughput and WIP as follows.
Let and be two points in the option space and

. The value of cycle time reduction can be computed
using the following formulas with average asking price (ASP)
of processed wafers, material cost (MC), production cost (PC),
and a rate of return ().

Revenue from throughput:

month year

WIP inventory cost:

Value of cycle time reduction

Let , , , and ,
the marginal value of cycle time reduction equals to approxi-
mately US $40 000/h. It should be noted that this figure is de-
rived from the condition of optimal loading. This information
could be used as a reference in evaluating projects of cycle time
reduction.

Fig. 7. The effect of capacity sharing.

TABLE II
EFFECT OFCAPACITY SHARING

V. APPLICATION TO CYCLE TIME REDUCTION

Besides throughput, cycle time is an important metric of
wafer plant performance. Given a tool portfolio, it is desirable
to have both high throughput and low cycle time. Unfortunately,
these performance measures tend to conflict with each other.
Because the operation of a wafer plant is complex and the
process and technology portfolios might undergo significant
changes, the state of its performance might gradually shift
toward one extreme or another over time. Therefore, period-
ically the need to reign in the cycle time will arise [9], [11]
and projects will need initiating. Like all other projects, cycle
time reduction projects will need evaluating for their economic
benefits. The value of cycle time is difficult to assess because it
is really dependent on the level of plant loading. When a plant
is underloaded (compared to its designed capacity), the cycle
time would be short. The payback of reducing cycle time is
minimal. When a plant is fully loaded, the cycle time is high
and tends to spike up with disrupting events such as machine
failures and process instability. When throughput is near the
designed capacity, cycle time is an excellent metric of overall
plant efficiency; the utility of reducing cycle time then becomes
significant.

The decision model presented in this paper is a suitable
method for the evaluation of cycle time reduction projects. The
procedure is as follows.

1) Construct an option curve of the plant. This can be achieved
by using a simulation program that simulates the operation of
the plant. The option curve would be as shown in Fig. 8.

2) Analyze the room of improvement of cycle time reduction.
The current state of the plant operation should be determined.
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Fig. 8. The room of improvement of cycle time reduction.

Suppose point C represents the current operation performance
( ). Points O and G are two corresponding points on the
option curve. Point G is an ideal goal of cycle time reduction.
The distance between points C and G then is an estimate for the
potential room of improvement.

3) Analyze the economics of cycle time reduction.

VI. DISCUSSION ANDCONCLUSION

This paper describes a methodology for tool portfolio plan-
ning, focusing on portfolio optimization and economic analysis
with multiple performance criteria. The proposed procedure can
be summarized as follows.

1) Assign a value to the parametersand of the utility
functions and , respectively.

2) Generate a number of efficient portfolios.
3) Find a fitting function for each portfolio and determine

the parameters and of the option curves.
4) For each portfolio, solve for the equilibrium weightand

the optimal loading level.
5) Determine the optimal portfolio using the capital effi-

ciency criteria.

Following this procedure, the optimal portfolio and its op-
timal loading level can be determined. This procedure has been
run through a set of industry data. Furthermore, this method-
ology can be applied to objectively arbitrate capacity sharing
between plants and to evaluate the economic value of marginal
reduction of cycle time.
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