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Abstract – Due to high cost of capacity investment, many 
semiconductor manufacturing companies have exhibited the 
need to pursuit innovative capacity plans and planning 
methods. In this paper, a case study of option-based 
capacity planning is presented. Three issues are addressed: 
estimation of production cost parameters, valuation of 
capacity, and analysis design . It is shown that the option-
based approach, in long-term, could generate a capacity 
plan that requires less investment, but generates higher 
operating income. 

1. INTRODUCTION 

Capacity planning is crucial to corporate performance in the 
semiconductor industry but is very challenging. Figure 1 
shows the installed capacity and output of a major 
manufacturing company over a period of 9 years. There are 
periods of severe over- and under-capacity. Due to high 
cost of capacity investment, corporate performance is 
necessarily impaired by such mismatches between demand 
and capacity. This phenomenon is not limited to any one 
company but is pervasive in the industry. Therefore, many 
companies have exhibited the need to pursuit innovative 
capacity plans and planning methods. 
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Figure 1. Mismatch between capacity and output 

Capacity planning comprises many tasks (Table 1). Most of 
the studies in the literature address the problem of tool 
portfolio optimization. Swaminathan addresses the tool 
procurement decision over a planning horizon of multiple 
time periods [8].  The uncertainty of product demand is 
modeled by a set of demand scenarios. A large integer 
program is described that minimizes the expected stock-out 
cost over all demand scenarios. Barahona et al. describes a 
stochastic programming approach under demand 
uncertainty [2]. The tool purchase, wafer starts, and work 
assignment decisions are formulated as a large mixed-
integer program. Ahmed uses multi-stage stochastic 
programming instead of two-stage stochastic programming 
to better model the flexibility of tool purchase in later time 

periods bestowed by occurrence of new events [1]. The 
paper compares the relative merit between two-stage and 
multi-stage stochastic programming, and finds that the 
merit increases with the number of stages and the number 
of decision branches per stage. Christie and Wu describe a 
stochastic programming formulation for tool portfolio 
planning at the multiple-plant level [6].  

 Objective Tasks Ref. 

Short
-term

Order 
fulfillment

• Capacity checking 
• Order postponement
• Bottleneck analysis 

 

Mid-
term

Tool 
portfolio 

• Alternative tool 
planning 

• Tool purchase and 
retirement 

[1, 2, 8]

Long
-term

Business 
planning & 
strategy 

• Technology 
preparation 

• New fab phase-in 
[3, 5] 

Table 1. Capacity planning tasks and methodologies 

A few papers address long-term or process issues related to 
capacity planning. The plant-sizing problem is addressed by 
Benavides et al. [3]. Product demand is assumed to follow a 
geometric Brownian motion process. The timing decisions 
are modeled as an optimal stopping problem. The paper 
shows that optimal trade-off between economics of scale, 
and flexibility can be reached by a sequential deployment of 
modular plants. Karabuk and Wu consider the coordination 
problem between production manager and marketing 
management in the same corporate organization, that is, to 
blend the two forces that drive the decisions on capacity 
planning [7]. Two types of uncertainties are modeled: one is 
capacity estimation and the other is demand volatility. 
Stochastic programming is used to solve the optimal 
capacity plan. 

The basic logic of conventional capacity planning is to have 
sufficient capacity which will satisfy product demands. The 
goal is typically to maximize the profit. In this paper, it is 
shown that this logic is not necessary correct. This logic 
would be correct only if the demand could be predicted 
with certainty.  

In this paper, a study of option-based capacity planning is 
presented using the data of Figure 1 and other relevant data. 
The basic idea of the option-based approach is that capacity 
decisions should include the option of waiting for more 
demand information to materialize [6], in addition to 
pursuing immediate capacity expansion to match demand 
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forecasts that are rarely correct. Beside the conclusion 
section, the remainder of the papers has three parts. 
Calibration of demand uncertainty is first described. This is 
followed by a model for the valuation of capacity. The 
model is then applied to the historical capacity trajectory of 
Figure 1 to evaluate the potential benefits of the option-
based approach. 

2. CALIBRATION OF UNCERTAINTY  

The uncertainty in demand is the root cause of the problem 
facing capacity planning. There have been little studies on 
characterizing the uncertainty. The geometric Brownian 
motion (GBM) process  has been used in [3] to model the 
demand process. In this paper,  we analyze the suitability of 
BMP as a modeling tool using the demand phenomenon of 
Figure 1 as the case study. [Note that the wafer output can 
be considered as a one-side estimate of actual demand.]  

A GBM process is characterized by a diffusion equation: 
 where is the demand at 

time t, is the standard Wiener process, and
tttt dwqdtqdq ⋅⋅+⋅⋅= σµ

tdw
tq

µ and σ are 
the drift and variance parameters respectively.  Following 
the method described in [8], the growth rate rt, can be 
estimated by 
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The drift and variance parameters have the value of 0.2596 
and 0.3339 respectively. Figure 2 shows some sample paths 
of the constructed model, which validate that the model can 
reasonably represent the variability of the underlying 
demand process. 
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Figure 2: Sample paths of the demand process 

To facilitate numerical computation, the binominal model 
of Jarrow and Rudd [6] is then used to approximate the 

continuous demand process (Figure 3). In this model, the 
possibilities of an increase or a decrease in demand are 
equal (Figure 3).   

2
11;

2
1

])exp[(

])exp[(

2
000

2
000

=−=

∆−∆−=⋅=

∆+∆−=⋅=

−
∆+

+
∆+

pp

ttqvqq

ttquqq

tttt

tttt

σσµ

σσµ

 

0tt = ttt ∆+= 0 ttt ∆+= 20

0t
q

+
∆+ ttq

0

−
∆+ ttq

0 −−
∆+ ttq 20

−+
∆+ ttq 20

++
∆+ ttq 20

p

p−1

p

p−1

p

p−1
 

Figure 3: The binominal tree of demand variation  

The value of capacity is dependent on future demand. In 
this study, we analyze the capacity trajectory of Figure 1 
and evaluate the rationality of each capacity increment with 
the premise that the underlying demand process is GBM of 
the previous section. 

3. VALUATION OF CAPACITY  

Parameter estimation 

The dominant cost item in semiconductor manufacturing is 
the depreciation of machines, equipment and facility. In this 
study, this cost is called (irreversible) fixed costs and all 
other costs are called variable costs. Note that by lumping 
overhead costs with other variable costs, this dichotomy 
classification is different from conventional cost accounting 
practice. We have analyzed historical data of total variable 
cost and capacity level. Figure 4 clearly exhibits a 
proportional relationship between total variable cost 
(vertical axis) and capacity level (horizontal axis).  The 
variable production cost is estimated to be $659 per wafer. 
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Figure 4: Relationship between total variable cost and 
capacity level 
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Another interesting finding in our data analysis shows that 
the irreversible cost per unit of capacity is fairly constant. 
Over the nine year period, the total fixed asset of the 
company increased by 10 folds but the ratio of capacity to 
fixed asset varying over a narrow range (Figure 5). It can be 
interpreted that for a factory generation (such as 200 mm 
wafer), this unit cost could be regarded as a constant.  The 
significance of this finding is that the model of rationality 
analysis will have one less variable. From Figure 5, the 
average irreversible cost of capacity as measured by wafer 
per quarter is approximately $9,514. 
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Both sizing and timing of capacity decisions can be made 
based on the value of capacity and value of waiting. In 
general, the optimal capacity increment and the demand 
required to trigger a pre-specified capacity increment 
(Figure 6) occur at the point where the two quantities have 
equal value: 
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Figure 5. Irreversible cost of  unit capacity 

Value in place Figure 6. Optimal capacity increment 

Given a realized demand at time t, the future demand will 
be represented as a binomial scenario tree. Let the current 
capacity be  and the capacity increment be0c c∆ . The 
effective capacity increment, ECI, can be expressed as  

4. PERFORMANCE EVALUATION 

Forecasting demand is a complicated business process. 
Because of the volatile nature of the semiconductor industry, 
the visibility of demand is also very dynamic. Sometimes 
there is very low visibility on the next quarter. Other times, 
there are significant backlogs so that the demand in term of 
workload is visible over the near future. Both cases must 
have occurred over the nine year period. In order to 
evaluate the rationality of the capacity trajectory, clever 
design of analysis is required. 
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where the expected value is computed over the scenario tree 
s. Let the deployment lead-time be d, the life time of 
capacity be l, p be the price and v be the variable cost. An 
irreversible cost  is incurred for a capacity 
increment . The value in place for a capacity increment 
is the total operating profit, defined as revenue less variable 
cost, during its life time. 

)( cI ∆
c∆ Design of analysis 

We have designed two boundary scenarios for rationality 
analysis. The first scenario assumes that the GBM model is 
a faithful representation of the demand process and no 
historical output data beyond the base period is utilized. 
This scenario is called the scenario of complete uncertainty. 
The other scenario assumes that the demand of the current 
and next time periods is reasonable available. But the 
demand beyond the next time period is full of uncertainty. 
This scenario is called the scenario of reduced uncertainty. 
These two scenarios will delineate the boundary in which 
the actual demand might fall.  
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The value of a capacity increment is its value in place 
subtracted by its irreversible cost.  

The value of waiting, F , is the discounted value of 
deploying the capacity increment in the next period. 

)(, tst
Denote the demand scenario tree emanating from tq at time 
t as )( tt qS .  The demand tree for the complete uncertainty 
scenario is )ˆ( tt q

ˆ( +

S , whereas that of the reduced 
uncertainty is )1tt qS . 
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Figure 7. Two scenarios of uncertainty level 

The option-based model described in Section 3 has been 
applied to the two scenarios of analysis. A new capacity 
trajectory is generated following the option-based approach. 
Capacity increments are determined using the sizing rule 
and capacity decrements are taken directly from the 
historical capacity trajectory. The resultant two capacity 
trajectories are shown in Figure 8. It can be observed that 
both trajectories are more conservative than the historical 
trajectory.  
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Figure 8. Trajectories of capacity increment  

The revenue, operating income and capacity cost of the two 
trajectories are compared with those of the historical 
trajectory in Figure 9. Following the option-based approach, 
the capacity cost will be lower but the operational income 
will be higher by a ratio between 0.1% and 7.6%. 
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Figure 9. Income of capacity trajectories  

5. CONCLUSIONS 

In this paper, the rationality of capacity trajectory of a 
major semiconductor manufacturing company is analyzed 

at the aggregate level. Our data analysis has produced 
useful findings on the relationship between capacity and 
total assets. It is shown that the option-based approach 
could generate a capacity plan that requires less investment, 
but generates higher operating income in the long term. 
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