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A Methodology for Product Mix Planning in
Semiconductor Foundry Manufacturing

Yon-Chun Chou and I.-Hsuan Hong

Abstract—Since a semiconductor foundry plant manufactures a
wide range of memory and logic products using the make-to-order
business model, the product mix is an important production
decision. This paper first describes the characteristics of the
product mix planning problem in foundry manufacturing that
are attributable to the long flow time and queuing network
behaviors. The issues of time bucket selection, mix optimization
and bottleneck-based planning are next addressed. A decision
software system based on integer linear programming techniques
and a heuristic procedure has been implemented for mix planning.
Data provided by a wafer plant has been used to study problems
related to product mix planning. It was determined that the
suitable time bucket of planning is either one week or one month
and the lead-time offset factor should be included in the logic of
workload calculation. This paper also presents various facets of
product mix decisions and how they should be integrated with
operations management.

Index Terms—Bottleneck analysis, product mix planning, semi-
conductor foundry manufacturing.

I. INTRODUCTION

PROCESS and machine technologies change rapidly in the
semiconductor manufacturing industry. Multiple genera-

tions of technologies usually coexist in a manufacturing plant.
In general, a semiconductor foundry plant has more than one
hundred machine groups and three to four hundred machines
in total. A foundry plant manufactures a wide range of memory
and logic products using the make-to-order business model. The
product types are not fixed but evolve with the time and the tech-
nology portfolio of the plant. The quantity of product types is
influenced by the economics of both scale and scope and could
number in the hundreds. Typically, the manufacture of a product
requires several hundred processing steps and a machine group
may be utilized more than once as successive circuit layers are
added. This phenomenon of multiple visits to a machine group
is commonly referred to as the reentry property of the routing
[5]. The process routings of different products may differ signif-
icantly in the machines to be visited and in the processing times
spent on the machines. A machine group is usually shared by
many processing steps but, due to process requirements, some
machines may be dedicated to certain process steps. The pro-
cessing time requirements of the same machine group by dif-
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ferent products may differ by as much as 100%. The large vari-
eties of processes, machines and products lead to a conspicuous
mix-planning problem in semiconductor foundry plants.

Productmixplanningisacommonprobleminmanyindustries.
Besides strategical planning, it involves two issues at the
operation level: cost accounting of capacity at the process
step level [3] and the optimization of product mixes. The
objective of cost accounting is to accurately estimate the
manufacturing cost of each product type. This issue is important
when the overhead costs need to be correctly attributed to the
manufacturing activities associated with each product. Since
capital investment and sunk costs account for the largest
portion of the manufacturing cost in a semiconductor plant,
the overhead cost accounting is not critical for the purposes of
product mix planning. The second issue, the optimization of
product mixes, seeks to maximize the efficiency of capacity
allocation across products. Mixed integer linear programming
techniques are easily applied to this problem. The manufacture
of a product requires a certain amount of each type of resource.
Since the resources are limited and the profits of products
vary, the optimization of the product mix can be modeled as
a combinatorial optimization problem. Recently, the theory
of constraints was applied to product mix planning [2], [6].
However, it has been shown by numerical examples that both
methods, although differing in their implementation procedure
and rigorousness, are conceptually equivalent and could lead
to the same solutions [7].

A semiconductor wafer plant, comprising hundreds of
machines and automated material handling systems, exhibits
complex queuing network behaviors [1]. The performance
measures of flow time, machine utilization, work-in-process
inventory, and throughput are heavily interrelated. The product
mix problem in the semiconductor foundry industry has a
number of unique characteristics that can be attributed to the
queuing network behaviors of the plant. First, the process
routing is long; the average flow time of a wafer lot is usually
more than one month. If a time bucket that is smaller than
the flow time is used in planning, wafer lots released to the
plant in one time period will introduce workloads to several
time periods. Because a wafer lot encounters significant and
uncertain queuing delays as it moves through the shop floor,
predicting with accuracy the workload by machine and by
time would be a challenging task when a small time bucket is
used. Second, production bottlenecks of the plant usually shift
from one group of resources to another. If a large time bucket,
such as two months, is used in planning, the effect of shifting
bottlenecks will be overlooked. Table I illustrates the dilemma
between using a small time bucket and a large time bucket.
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TABLE I
EFFECT OF THETIME BUCKET ON BOTTLENECK IDENTIFICATION

The table shows the machine time requirements of two product
orders ( and ) and the capacity of a machine. If a finer time
bucket (the second and third columns) is used and the workload
can be predicted with accuracy, capacity violations (e.g., in
Period 1) can be pinpointed, whereas the workload variation
will be evened out if a coarser time bucket (the fourth column)
is used. The third characteristic is concerned with the use of
product mix information. Because the performance trade-off
is complex in wafer plants, the product mix decision should
not be treated as a rigid production schedule to be adhered
to by decree. Engineers and managers on the shop floor have
access to real-time information that could be used in order to
dynamically enhance operation efficiency and productivity.
That is to say, product mix planning as a decision task should
not be separated from shop floor management. This perspective
will affect how product mix planning should be done and will
be elaborated on in later sections.

This paper presents a production mix planning methodology
for semiconductor foundry manufacturing. The remainder of the
paper is organized as follows. An analysis of the problem is pre-
sented in Section II. In Section III, the effect of time bucket
granularity on planning accuracy is analyzed to determine a suit-
able size of time bucket for product mix planning. In Section
IV, mixed integer linear programming models for multiple, het-
erogeneous classes of products are outlined. The integration of
product mix planning with shop floor management is also pre-
sented. In Section V, a procedure based on bottleneck analysis
is described to address the issue of large problem size. Discus-
sions of numerical cases and conclusions are presented in Sec-
tion VI, covering the necessity of cycle time offset, production
smoothing, and tool backup.

II. PROBLEM ANALYSIS

The problem of product mix planning can be described as fol-
lows. There is a pool of customer orders to be selected for pro-
duction over a certain horizon. The orders are either confirmed
orders or forecasts of generic products. Although the quantity
of distinct product types could number in the hundreds, some
of them have similar routings. If technology and machine time
requirements are used to characterize product types, the quan-
tity could be reduced to several scores (of generic products).
Because the production flow time is long, products may be rep-
resented as generic products to reserve production capacity of
the later times of the planning horizon. The order pool is rolled
forward when it is updated and the generic products eventually
will be replaced with distinct product types.

TABLE II
PRODUCT CATEGORIES

For the purposes of planning, four categories of product
demands are distinguished in our planning model: committed
orders, fixed make-to-order demand, variable make-to-order
demand and make-to-stock orders (Table II). Factory capacity
must be reserved for committed orders as a matter of course. The
unit prices of make-to-order demands are fixed but the volumes
could either be fixed, according to contracted delivery terms, or
be flexible to allow maneuvering room for enhancing operation
efficiency. The third category plays an important role in
integrating product mix planning with shop floor operation
management. Using this scheme of demand categorization, an

order may become an order and then order as the
order pool is rolled forward. Make-to-stock items are standard
products such as memory devices. In general, memory devices
require more advanced technologies. They are included in
the order pool in order to fill up factory capacity and to
drive the manufacturing technology. As for engineering lots,
it is better to set aside machine capacity for process and
product development work, as their schedule is much less
predictable.

The robustness and feasibility of product mix decisions, that
is, whether they can be achieved, predicate on the accuracy
of workload estimation. There are several implementations of
static capacity models in the literature that take into consider-
ation the factors of lead-time offset, process yield and the ef-
ficiency of resource utilization [4], [8]–[10]. The computation
logic is straightforward but there still remains a question of
tradeoff between precision and computation time.

In addition to the time bucket of planning that is mentioned
above, two other time buckets must be distinguished. One is as-
sociated with the work release frequency and another with the
lead-time offset. In a foundry plant, jobs are released to the shop
on a daily basis and the flow time is an importance performance
measure that is controlled with diligence. In a well-managed
plant, the flow time for each layer of circuits is less than two
days with a high level of certainty. Therefore, the time bucket for
lead-time offset should be one day. Candidate customer orders
in the order pool are part of the input data to product mix plan-
ning. However, it may not be suitable to use one day as the time
bucket for expressing the timing of those orders as the quantity
of an order is usually too large to be released in the same day.
On the other hand, if the fact of daily release is not modeled in
one way or another in product mix planning, the feasibility of
resultant mix decisions may be negatively impacted. The release
frequency to be modeled in product mix planning is a parameter
to be determined in later sections. This frequency will be called
thepseudo releasefrequency. It may be equal to or greater than
the actual release frequency.
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In building a planning model, each customer order is divided
into one or more work releases. Customer orders and work re-
leases will be called order batches and release batches respec-
tively in the remainder of this paper. Order and release batches
are characterized by identifier , quantity , product type

, and due time attributes. The due time for each release
batch is derived from the pseudo release frequency and the due
time of the demand batch to which it belongs. A static capacity
model is needed to calculate the workload primitives
for each unit of product that are due to the release batchand
process stepfor machine group in time , taking into consid-
eration the lead-time offset of each step. In calculating workload
primitives, the time bucket should be one day to match the gran-
ularity of flow time data.

Because multiple steps may share the machine group (re-
calling the reentry property), workload primitives for the same
machine group in the same time bucket of planning are summed
up in the mix optimization stage of planning. These sums of
workloads are calledaggregateworkloads . Here, a
different subscript for the time is introduced to represent
the time buckets of planning. The aggregation is over all steps;
therefore, the subscriptis no longer needed. It should be un-
derstood that the workloads generated by a release batch, if it is
selected, would equal its aggregate workloads multiplied by its
batch quantity. Let be the set of release batches selected. The
total workload will equal to .

There are two parameters in the calculation procedure. One is
the frequency of work releases and another is the time bucket of
planning . The computation time would be less if a large time
bucket of planning is used but a small time bucket will allow
bottleneck machines to be better pinpointed. Similarly, if a high
frequency of pseudo work releases were adopted, the prediction
of workloads would be more accurate at the expense of longer
computation time.

III. PRECISIONWORKLOAD CALCULATION

In this section, the detailed procedure of workload calcula-
tion is presented, followed by the results of our study on the
time bucket size of planning and the pseudo release frequency.
Because of the reentry property, the machine subscript will be
represented in a function form as to indicate that de-
pends on both and , and that there is a many-to-one relation-
ship between steps and machines. Similarly, the lead-time offset
is represented in a function form for the step of product
. For each release batch of productin time , workload

primitives are generated for each machine group. This step can
be symbolically represented as

where the represents a workload primitive, the double arrow
implies that one or more items of workload primitives are gen-
erated, the represents the set of all process steps of product
, the represents the required machine for , and the

term indicates that the occurrence time for the work-
load primitive is the due timeoffset backward by the lead-time

. Let be the last step of product be the pro-
cessing time, and be the yield of step . For each release

batch , there will be workload primitives in total. Each
workload primitive is identifiable by product-step pair and
its occurrence time is . The effect of the process yield is
to increase the workload. Therefore, capacity allowances must
be provided. Adjusting for yield allowances, the workload prim-
itives are calculated as

(1)

where

Here, yield allowance (ya) for each step is computed backward
from the last step to the first step of the process routing. The
yield allowance for the last step is set equal to its step yield. The
yield allowances for all other steps are iteratively accumulated
backward from the last step.

To identify the suitable granularity of product mix planning,
four time bucket sizes of planning and four release frequencies
have been compared. Let G-1, G-2, G-4, and G-28 represent
the time bucket size of four weeks, two weeks, one week and
one day, respectively. And let F-1, F-2, F-4 and F-28 represent
the work release frequency of quad-weekly, biweekly, weekly
and daily. (The larger the number, the finer the granularity.) To-
gether, these make up sixteen granularity schemes of planning.
For each stationary product mix (i.e., a repeating set of release
batches), it can be shown that the average of the total workloads

for each machine group is the same for all granularity
schemes. After all, the same set of jobs is released for produc-
tion. However, the variation of the total workloads is not iden-
tical.

Using actual process routing, product and demand data pro-
vided by a foundry plant (Section 6), an empirical study has been
done to evaluate the effect of the granularity level on the accu-
racy of workload estimation. The squared coefficient of varia-
tion (SCV) is chosen to be the measure of workload variability
[(2)]. The results are summarized in Table III.

(2)

where is the partial expectation over the time dimension.
It can be observed from Table III that, for each time bucket

size, no further accuracy on workload estimation can be gained
by adopting a higher release frequency and additional noise will
be introduced by adopting a lower release frequency. Thus, it is
concluded that the work release frequency should be consistent
with the size of time bucket.

Four granularity schemes (G1-F1, G2-F2, G4-F4 and
G28-F28) on the diagonal of Table III remain to be compared.
The Gregorian calendar is used to redefine the granularity
schemes for its practical appeals. The four granularity levels
of the new setting are one month (M), half a month (HM), one
week (W) and one day (D). Because months do not have the
same number of days, the work release will be less regular than
the previous setting. This is not undesirable since the actual
work release in the plant is usually not completely periodic.
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TABLE III
WORKLOAD VARIATION FOR DIFFERENTGRANULARITY SCHEMES

In addition, the effect of this additional source of variation on
the four schemes can be evaluated in order to compare their
robustness. In principle, the scheme D requires the least com-
putation time, but is the least capable of capturing the variation
of workload as daily workloads are aggregated into monthly
buckets. The scheme M is favorably biased in smoothing out
the workload variation. If the total workload for each
machine group is regarded as a random variable in scheme
D, the corresponding total workload in scheme M will be the
sum of approximately thirty such variables. This bias, however,
must be normalized. The normalization factors are shown in
the third row of Table IV. The evaluation of robustness has
three steps. The total workloads of the pseudo-released jobs are
first calculated. The average of is next calculated.
Finally, a magnification ratio is computed of the two quantities,
with the aggregation bias of large time buckets normalized

magni�cation

the average of
of released worknormalization

(3)

A large value ofmagnificationmeans that the variation in re-
leased work is magnified and shows up in variation of the total
workloads at individual machine groups. The results are sum-
marized in Table IV. The magnification ratios of scheme M and
scheme HM are comparable, and so is that for schemes W and
D. However, the schemes HM and D require higher computation
load compared with schemes M and W, respectively. Therefore,
it is concluded that either one week or one month should be used
as the time bucket size. In the remainder of this paper, the time
bucket size is set to one week, and the time subscriptwill be
replaced by the subscript. Therefore, the symbol will
be used, instead of , to refer to the total workload con-
tributed by batch and the total workload will be rewritten
as .

IV. PRODUCT MIX OPTIMIZATION

Several objectives are of interest in product mix optimiza-
tion: to maximize profit, to maximize wafer output, to maximize
tool utilization or to maximize a hybrid model of profit and uti-
lization. A mixed integer linear program (MILP) is used to de-
termine the optimal product mix and mix ratio (i.e., type and
volume). The decision variables, parameters, objective func-
tions and constraints are as follows.

Decision Variables:
: 0–1 variable for if batch is

selected, otherwise.
: Quantity of batch .

TABLE IV
WORKLOAD SENSITIVITY OF DIFFERENTGRANULARITY SCHEMES

: Quantity of batch .
: Fraction of tool to back up tool in period .
Parameters:
: Profit margin of product typeof and .
: Profit margin of product typeof in period .

: Quantity of batch for orders.
: Maximal quantity of batch for orders.
: Minimal quantity of batch for orders.

: Backup efficiency of tool with respect to tool
: Capacity of tool in time period .

: Residual capacity on tool in period .
In a foundry manufacturing environment, the objective of

product mix planning is usually not fixed but changes with the
business environment. Four basic objective functions can be
identified:

1) Maximizing profit:

2) Maximizing wafer output:

3) Maximizing machine utilization:

or

4) Hybrid model to maximize profit and utilization:

5) Hybrid model to maximize profit and output:

To maximize machine utilization is equivalent to minimizing
the total residual capacity of all machines. Since machines are
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not equal in cost and criticality, a weight could be asso-
ciated with each machine group in the third objective function.
In the fourth objective function the penalty for residual
capacity is set equal to the weighted unit profit multiplied by
machine throughput rate. The opportunity cost and the
average margin will be discussed in detail later.

Recall that is the aggregate workload contributed by one
unit of batch . The constraints for capacity, bounds on volume
and the smoothness of production volume are as follows:

(4)

where

where

where is the occurrence time of batch, and the production
quantity in a period is constrained to be within the %
range of that in the previous period.

1) Tool Backup Extension:In wafer plants, machines are, to
an extent, interchangeable. The workload of a machine may be
off-loaded to its backup machines. The efficiency of a backup
machine may not be the same as the machine to be backed-up.
A machine may be completely reassigned to backup another
machine, or a fraction of its capacity is reassigned. Let be
the set of backup tools for tooland be the tools that are
backed up by tool . The capacity and workload reassignment
constraints are

The fraction is a 0–1 variable if fractional backup is not
allowed in a time period; otherwise it is a real number.

A planner can run the above MILP formulations at his or her
discretion. Afterwards, the and type orders are fixed and
the associated 0–1 variables can be regarded as constants. The
degenerated formulations become Linear Programming (LP)
problems. Four categories of sensitivity data are provided: 1)
shadow priceof machine capacity, 2)marginal profit require-
ment for products, 3)unit profit allowanceand 4) capacity
allowance. The shadow price of a machine is the marginal
rate of revenue to the machine capacity. The marginal profit
requirement for a product is the required increment in unit
profit for a product to be selected for production. The optimal
mix ratio will remain the same when the unit profit of a product
fluctuates within its profit allowance. The capacity allowance

of individual machines delimits the range of machine capacity
within which the optimal product mix remains the same.

The sensitivity data is derived based on the duality theory.
The above LP formulations can be written in a primal form

Maximize

subject to

The and are the parameters of the formulation.is
the unit profit from product is the production quantity for
product is the amount of resourceconsumed by each
unit of product , and the is the amount of resourceavailable.
The dual form will be

Minimize

subject to

In solving the primal formulation, the solution is obtained,
but is also obtained as a result of solving the problem. The
economical interpretation of sensitivity data can be explained
using these two forms as follows. The dual price of machine
capacity is just and is the contribution to profit per unit of
resource. That is, if is increased by one unit, the profit will
increase by an amount equal to.

No matter what objective function is chosen, a common
thread of the goals is to utilize the capacity as much as possible.
However, the capacity constraints of the above formulations
are rigid, whereas, in practice, the capacity is rather flexible.
A common practice in factory management is to slightly,
but temporarily, overload the factory in order to expose the
bottlenecks. This is followed by focused effort to alleviate the
bottlenecks. That is to say, to set the goal higher and then to
achieve it. In product mix planning, this strategy can also be
implemented in the following formulation.

Recall that the total workload is the total workload at
machine group in time . That is

(5)

Equation (5) can br rewritten in a succinct form

After a product mix is generated, the workload is analyzed
to identify the bottleneck machine groups, BMG. The capacity
constraints [(5)] of bottleneck machine groups are then replaced
by the following constraints.

(6)



CHOU AND HONG: METHODOLOGY FOR PRODUCT MIX PLANNING 283

The effect of (6) is to share the capacity of time , which
is under-loaded, with that of time. Therefore, time may be-
come slightly overloaded. The extra workload, if not executed
during time , will be absorbed by time . As a side effect,
the queuing delay for jobs in timemight be increased but is
still controllable by due diligence in dispatching and machine
setup avoidance. Thus, the overloading would be temporary but
judiciously focused, but offers an opportunity to drive the pro-
ductivity of the plant higher.

2) Driving the Output Higher (an Advanced Applica-
tion): The slack variable provides hints about where
the bottleneck machines are (namely, the machine groupat
time ). A second source of hints is the sensitivity data. The
procedure for an advanced application of the product mix
planning models is as follows.

1) Set a bottleneck threshold for the slack variable for two
adjacent time periodsand . For time the threshold,

, is a lower bound and for time the threshold, ,
is an upper bound.

2) Screen all machine-time pairs where the slack variable
has a value within the specified bounds.

3) Modify the LP formulation by replacing (5) with (6) for
the bottleneck machine group and solve for the product
mix.

In one case study, the was set at 0.7 and seven bottleneck
machine groups (with the highest utilization) were identified.
The third step was individually applied to the seven bottlenecks.
Table V shows the respective increase in profit. The same pro-
cedure of temporarily overloading the plant was applied to two
more data sets (of machine portfolios). Similar results were ob-
tained. These empirical results suggest that there is a strong cor-
relation between the dual price and the profit increment and that
the correlation between the utilization and the profit increment
is less certain. Therefore, it is concluded that the dual price in-
formation is more revealing and should be used to rank the bot-
tleneck machines.

V. BOTTLENECK-BASED PLANNING

For MILP formulations, the computation efficiency is
strongly affected by the number of variables and constraints.
The above MILP model is suitable for small formulations,
measured by the length of the planning horizon, the number
of product types and other parameters. For large problems,
computation time problems may arise. We observed that only
a few constraints are binding and it is binding constraints that
dominate the solution. Therefore, nonbottleneck machines
could be excluded to reduce the problem size. However, this
must be done in a systematic way. The bottleneck tends to shift
when product mix changes from period to period.

Bottleneck determination and product mix are two convo-
luted decisions. An iterative procedure has been developed to
identify the bottleneck machine group set. A reduced formu-
lation covering a section of the planning horizon is first used
to determine an initial product mix. The bottleneck set is next
determined from the product mix. A formulation based on the
bottleneck set is in turn used for the entire planning horizon to

TABLE V
INCREASE INPROFIT BY TEMPORARILY OVERLOADING THE FACTORY

Fig. 1. Determination of the bottleneck machine set.

optimize the product mix. The product mix and bottleneck set
are revised iteratively. The procedure is as follows.

1) Select a reduced time span, which should be longer than
the average flow time, at the center of the specified plan-
ning horizon. Let .

2) Solve an MILP formulation for time periods in the re-
duced time span. Let . Identify bottleneck ma-
chines based on a utilization threshold. These machines
are new bottleneck machines to be included in
the bottleneck tool set.

3) Set . Set the bottleneck set
.

4) Solve an MILP formulation on the bottleneck set for all
periods.

5) Check the workload of machine groups. If there are over-
loaded machine groups, set to them and go to Step
(4), otherwise, stop.

This procedure is an iterative one. The bottleneck tool set is
monotonically increasing in its size. The setting of bottleneck
threshold affects the efficiency of the procedure. If a lower value
is used, more machines will be deemed the bottleneck—some
erroneously. If a high value is used, initially few machines will
be included in the bottleneck set. But, as more time periods are
included in the formulation in later iterations, new bottleneck
machines will surface. Fig. 1 shows a relation between the uti-
lization threshold and the size of the bottleneck set in a case
study. When the threshold is set at 0.5, 65 machine groups are
included in the bottleneck set. No additional bottleneck tools
surfaced afterward. When the threshold is set at 0.95, 15 ma-
chine groups are initially included in the set. But in a second
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iteration, 40 additional groups surfaced as new bottleneck ma-
chines, bringing the total count of bottleneck machine groups to
55. Fig. 1 shows that a threshold between 0.87 to 0.92 results in
the smallest bottleneck set (39 out of 116 machine groups).

VI. DISCUSSIONS ANDCONCLUSIONS

The current practice of product mix planning uses rough gran-
ularity. A large time bucket of one month is used and the flow
time offset is ignored in the logic of workload calculation. The
above product mix methodology has been implemented as a
software decision system and run on industry data comprising
116 machine groups, 34 backup relations and 4 representative
memory and logic products of different technology generations.
In this section, the computation experience related to improving
the current practice is presented.

A. Capacity Allocation

The fifth objective in Section IV is of the greatest interest in
practice. It merits elaboration. Although the profit is the cardinal
objective for a manufacturing enterprise, in the foundry busi-
ness there are usually obligations to reduce backlog of products
with low profit margins. With the first objective function, the
backlog might not be cleared up timely. As a result, the resultant
product mix may not be sufficiently convincing in joint meetings
of sales and production. Two conflicting goals are involved: to
schedule high margin orders and to clear up low margin back-
logs. If the latter concern is not addressed, the driving force of
profit optimization will delay the production for lower margin
products. Since the backlog is an obligation that must eventu-
ally be met, it will use up capacity of future time periods. When
the industry-wide capacity is tight and the profit margin is in an
increasing trend, the opportunity cost for postponing the fulfill-
ment of obligations must be taken into consideration. This is an
issue related to capacity allocation.

To model the fact that each customer order is to be scheduled
for one (or none) of a number of time periods, a 0–1 selection
variable is created for each release batch for each time period in
the planning horizon . Without loss of generality,
a set of simplified symbols is used here for clarity. Each release
batch in time is now represented by . Let be the
average margin for one unit of product at timeand the profit
margin for batch be . The ratio of the average margin
to the profit margin of a product is used to represent the relative
opportunity cost. Namely, the second term of the fifth objective
function is expressed as

(7)

At the time that an order batch is booked, its margin should be
in line with . Therefore, the term of formula (7) reduces to
the average profit. If the production of a batch is postponed, the
relative opportunity cost ratio will increase, thus increasing the
likelihood of being chosen by the optimization code. In addition,
the following inequality needs to be included in the formulation:

Fig. 2. Effect of lead-time offset.

Fig. 3. Effect of production smoothing.

B. Necessity of Including Lead-Time Offset in Workload
Calculation

The workload calculation logic described in Section III in-
cludes the factor of the lead-time offset. This meticulous detail
of calculation is necessary. Fig. 2 shows the production volume
for two product mix solutions, one with the lead-time offset and
another without the lead-time offset. Although the output and
profit would be higher if the lead-time factor is not included,
the resultant product mix is actually infeasible as the machine
capacity is violated at 122 locations of after the total work-
loads are examined in the case study.

C. Production Smoothing

Although the product mix will change with time, it is desir-
able that the change be controlled and smoothed. Production
smoothing imposes more constraints on the mix optimization
problem. It will adversely affect the expected profit. On the other
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Fig. 4. Effect of machine backup.

hand, it will reduce the variation of the total workloads, thus,
creating a favorable setting for enhancing productivity. Fig. 3
shows the effect of production smoothing. The range param-
eter is varied from 10% to 400%. A value of 100% seems to be
a good demarcating point, beyond which the effect of product
smoothing will diminish rapidly.

D. Machine Backup

The primary objective of machine backup is to dynamically
reassign workloads in order to reduce the machine requirements
and the flow time. On the operation aspect, the profit and output
seem to increase as a result of exploiting machine backup. Ma-
chine backup will result in a slight change in product mixes. In
the case study, the wafer output increases by 0.8% and the profit
by 0.48% (Fig. 4).

This paper presents a methodology for product mix planning.
It is shown that the time bucket size of one month or one week,
instead of one day or two weeks, should be used for workload
and product mix calculation. It is also concluded that the work
release frequency should be at the same granularity level as the
time bucket size. Mixed integer linear programming formula-
tions have been developed to optimize product mix, taking into
consideration the requirement of production smoothing and ma-
chine backup. A bottleneck-based procedure has been devel-
oped for problems of large size. A procedure for judiciously
overloading the plant to drive the productivity higher is demon-
strated. Finally, it is also shown that it is essential to include the
lead-time offset factor in product mix planning.
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