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Resource portfolio planning is a frequent task in semiconductor
wafer fabrication plants, as process, machine and product
technologies evolve rapidly and the plants go through capacity
expansion. As wafer fabrication plants are complex integrated
factories with conspicuous queuing effects, portfolio planning
must take into consideration machine use, factory throughput,
and total flow-time simultaneously. This paper describes a
resource portfolio planning methodology for wafer fabrication
foundry plants. An improved static capacity model is first
presented. A portfolio planning procedure based on static
capacity estimation and queuing analysis is next described.
This procedure enables the solution space of resource portfolios
to be explored effectively and has demonstrated a capability
superior to the current planning method in an industry case
study. A software implementation of the procedure is also used
to clarify planning dilemmas. It is shown that empirical formu-
lae can be used to estimate the efficiency of batch machines.
It is also used to show three types of portfolio adjustment
action: flow-time reduction, cost reduction and effectiveness
improvement.

Keywords: Batching efficiency; Portfolio planning; Semi
conductor manufacturing; Static capacity modelling; Queuing
capacity modelling

1. Introduction

In the semiconductor industry, a wafer plant is run in the
make-to-order production mode, and there are usually a large
number of customer orders in the plant at any time. The
important measures of operation performance include machine
use, factory throughput, and total flow-time. A full-scale wafer
plant contains more than 100 types of machine, and the quantity
of machines may be as high as 300 to 400. The manufacture
of a product requires 300 or more processing steps. A machine
group (of identical or similar machines) may be visited more
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than once as successive circuit layers are added. This is known
as the re-entrant property of process routeing. Because of the
long routeing cycle, the total flow-time for a batch of products
usually exceeds one month. Modern wafer fabrication plants
are highly automated factories, with advanced material handling
systems and factory-wide computer control. There are conspicu-
ous queuing phenomena. Depending on the mix of products,
the bottleneck machines shift with time and work-in-process
lots can be regarded as moving through a network of queues.

A resource portfolio refers to the makeup, in quantity and
type, of the set of processing machines in a plant. In the
semiconductor foundry industry, there are rapid changes of
product mix, process technologies and machine technologies;
multiple generations of technologies coexist in a plant as it
goes through capacity expansion. Therefore, wafer plants are
faced with two related decisions: the product mix and resource
portfolio [1]. Given a resource portfolio, the best product mix
should be determined to maximise the profit or to achieve
other corporate goals. Conversely, given the expected product
mix in the future, the best resource portfolio should be planned
for. Product mix planning and resource portfolio planning are
frequent and continuous tasks in wafer plants. They are essen-
tial tasks that support business strategy planning to exploit
market opportunities and to reduce the risk of machine obsol-
escence.

Capacity estimation is a fundamental issue in resource port-
folio planning. Because wafer plants manifest the behaviour
of complex queuing networks, the performance measures are
complexly interrelated. Discrete event dynamic simulation,
queuing models [2] and static models [3–6] are three common
methods for capacity analysis, of which static models are
usually used owing to their relatively quick response time and
ease of use. However, static models suffer from two major
drawbacks, namely, inaccuracy of estimation and lack of queu-
ing delay information.

There have been many research studies on the configuration
design of flexible manufacturing systems [7–10]. Queuing net-
work models and mathematical programming techniques were
used in configuration design and optimisation. In [11], a quali-
tative reasoning model was used to provide guidance for
configuring integrated manufacturing systems. However, the
special characteristics of wafer fabrication plants, including
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batch tools, tool back-up and tool dedication, have not been
addressed.

The focus of this paper is to describe a resource portfolio
planning methodology that has been developed for semiconduc-
tor foundry manufacturing plants. It makes use of a static
model and a capacity model for capacity analysis. The static
capacity model is an improvement over those that have
appeared in the literature. The queuing capacity model is
adapted from [2] and is designed for the task of capacity
planning. A planning procedure has been developed to explore
the solution space of resource portfolios. The remainder of this
paper is organised as follows. In Section 2, the workload
computation logic for the static capacity model is described.
Our proposed method for estimating batching efficiency and
its capability are presented in Section 3. A portfolio planning
procedure based on the trade-off between flow-time, cost and
throughput is presented in Section 4. The issues of tool back-
up and dedication are analysed in Section 5. Finally, con-
clusions can be found in Section 6.

2. The Logic of Workload Computation

Several studies have focused on improving the accuracy of
static models. Table 1 summarises the scope of static capacity
models described in the literature, with the factors of inaccuracy
listed down the table. (In the semiconductor industry, the word
tool refers to processing machines. In this paper, the word tool
and machine will be used interchangeably.) The first four
factors are relatively straightforward to include in a capacity
model, but the next three factors require some mathematical
treatment. In calculating tool usage time, the total time is
divided between operational time and non-operational time,
and operational time is further distinguished between uptime
and downtime. The tool availability is defined as the ratio of
tool uptime to tool operation time. The tool efficiency is the
statistical mean of the ratio of actual throughput to maximum
throughput. The process yield is the ratio of good product
output to the amount of input materials. The yield adversely
affects workload in the form of reworks and scrap. Semicond-
uctor manufacturing is characterised by a long process flow-
time. Jobs released to the plant in one time period may
introduce workload in other time periods, even when a large
time bucket, such as one month, is used in planning. To

Table 1. Scope of static capacity models.

Factors Witte [3] Hsih [4] Wu [5] Neudorff Chou
et al. et al. [6] and You

Tool availability � ? ? ? �
Tool efficiency � ? ? ? �
Yield � ? ? ? �
Lead time offset ? � � ? �
Batching � �
efficiency
Tool dedication � � �
Tool backup Rudimental Rudimental �

?, uncertain but presumed.

calculate the workloads accurately, the expected arrival time
of the workloads due in a job for individual tools should be
calculated using lead-time offset and process routeing infor-
mation. Normally, the tool availability and efficiency, the pro-
cess yield, and flow-time data are collected on the shop floor
[5], or they can be assumed as premises in capacity planning.

Incorporating the first four factors of Table 1 will produce
a basic static capacity model [3]. To further enhance the
precision of capacity estimation, the effect of nominal operation
policies on the efficiency of using machine resources can be
incorporated. Semiconductor processing tools can be broadly
classified as serial or batch tools. Serial tools can be regarded
as regular tools. A set-up changeover is usually required
between two runs of different products. Batch tools, such as
furnaces, are machines that have a large capacity to accommo-
date multiple lots of products. Batch tools may or may not be
loaded to capacity before they are run. In the former case, the
use is more efficient; however, work-in-process lots will spend
more time waiting to be batched. In the latter case, the average
waiting time for each lot is less, but a fraction of the machine
capacity will be lost. The loading policy of batch tools has
been well studied to control queuing delay time [12–14]. For
capacity planning, however, the information that is needed is
not queuing delay time, but the average batch size of loading.

Batching efficiency is expressed as the statistical mean of
the ratio of actual loading size to machine capacity. In [6],
batching efficiency is estimated through regression analysis of
the “visits to starts” ratio and the observed efficiency, while
the total set-up time is estimated by analysing the occurrence
durations of tool idleness based on historical data.

Tool dedication and back-up are the second source of inac-
curacy. In the process routeing of a product, each process step
is usually assigned to a machine group (a machine group is
made up of one or more machines of the same capability).
Owing to special processing requirements, individual machines
may be dedicated to the manufacture of particular products or
to processing steps. Conversely, alternative machines may be
specified for a process step [15]. When a primary tool has a
high use, its alternative tools may be used as back-up tools to
offload its workload. Both tool dedication and back-up impose
limitations on resource applications, thus, they affect the factory
throughput. In [5], process constraints on dedication and back-
up are maintained a priori in a database. To forecast equipment
loading, workloads are assigned manually or shifted while
observing constraints on process capability, priority, and tool
availability [4]. Tool back-up planning has also been dealt
with in a simple static manner [6]. The practice of tool
dedication and back-up complicate capacity estimation. Both
issues are involved with combinatorial optimisation [4,6] and,
thus, are beyond the capability of static capacity modelling.
There have been no satisfactory treatments in the semiconductor
manufacturing literature.

The major input to portfolio planning includes product
demands, process routeings and yields. The product demands
are expressed as demand batches, Dit, each characterised by
the quantity D, product type i, and due time t. To represent
the routeing information, the process steps of a product are
indicated by the subscript j and the required tools by the
subscript k. Because of the re-entry property, the tool subscript



14 Y.-C. Chou and R.-C. You

is also represented, in a function form, as k(i,j) to indicate
that k depends on i and j, and that there is a many-to-one
relationship between steps and tools. The due time for Dit is
the time period t, but the workloads for some tool groups may
fall in time periods other than t. Let l(i,j) be the leadtime
offset of the workload for the jth step of product i, starting
from time t. For capacity planning, the yield of each step is
also required and is specified as sy(i,j).

Let the unit workloads be the amounts of workloads gener-
ated by a demand batch for the tool groups. For each demand
batch, many unit workloads can be generated. This step can
be symbolically represented as:

Dit →→ wi,{j},k(i,j),t-l(i,j)

where w represents a unit workload, the double arrow implies
that one or more unit workloads are generated, the {j} rep-
resents the set of all process steps of product i, and the term
t-l(i,j) indicates that the occurrence time for the unit workload
is the due time t offset backward by the lead time l(i,j). Each
unit workload is identifiable by a product-step pair (i,j). Let
Pi,j,k be the processing time and let J(i) be the last step of
product i. Adjusting for yield allowances (ya), the unit work-
load of each product-step pair of (i,j) at time t is calculated as

wi,j(i),k(i,j),t(i,j) �
Di,t pi,j,k

yai,j,t

∀i

where

yai,j � syi,j * yai,j�1 ∀j

yai,J(i) � syi,j

Here, the yield allowance for each step is computed backward
from the last step to the first step of the process flow. The
yield allowance for the last step is set to be equal to its step
yield. The yield allowances for all other steps are iteratively
accumulated backward from the last step. The total workload
for tool k, Wk,t, and tool requirement, qk,t, can be computed as

Wk,t � �
i

�
j(i)

wi,j,k,t ∀k,t (1)

qk,t �
Wk,t

(availability)k (operation–time)t(efficiency)k

∀k,t

Tool quantity is finally determined by rounding up qk,t and by
considering the time trajectory of tool requirements.

3. Batching Efficiency

As mentioned in Section 1, to reduce the flow-time, batch
tools may not be loaded to full capacity. The loading policy
of batch tools has been thoroughly studied and reported in the
literature [12–14]. With only local information (without arrival
forecasts), the general conclusion is that the greedy loading
rule is close to optimal [12]. Let � be the arrival rate of jobs,
E[S] be the expected value of the service time, and let cg be
the quantity of tools in tool group g. Define the traffic intensity
for a tool group as the sum of all workloads and downtimes
over its capacity in a period. A lower bound formula for the

average batch size (b) was derived for the special case of
independent job streams, constant arrival rates and no down-
times [12]:

b � � 1 � e��E[S] � �E[S]
cg

where the second term on the righthand side represents the
traffic intensity. When the traffic intensity is high, the first
term approaches zero. This formula contains just one parameter,
namely cg. To enhance the estimation accuracy of the batching
efficiency, the effect of tool capacity (Bg

max), tool quantity and
tool downtime (�inc

g , as a fraction) on batching efficiency has
been analysed in this study. The objective is to identify formu-
lae that can be used to predict the batching efficiency. The
Monte Carlo simulation was used to generate data for eight
scenarios of various levels of tool capacity, tool quantity and
tool downtime. The eight scenarios are defined in Table 2.

The resultant characteristic curves that relate the average
batch size (the vertical axis) with traffic intensity (the horizontal
axis) are shown in Fig. 1. On the righthand side of each figure,
where the traffic intensity is high, the average batch size is
close to the tool capacity. On the lefthand side, even though
the traffic intensity is low, the average batch size cannot be
lower than one. Therefore, the characteristic curves would past
through the point (1, Bmax

g ) and the point (�inc
g ,1).

To construct the prediction formulae, piecewise lines (lines
A and B) are fitted to the simulated data to obtain the following
approximation formulae (Fig. 2):

bg � �
1 when 0 � �g � D

1 � � Bmax
g � 1

1 � D � �inc
g
� (�g � D) � when D � �g � 1 � �inc

g

D � [ �0.0674 ln (Bmax
g ) � 0.2447 ]

�
Cg

20 (Bmax
g )2 ( Bmax

g � 2)

where �g is the traffic intensity less �inc
g . The formulae also

show that tool capacity and quantity do have an effect on the
location of the excursion point D.

To validate the accuracy of the above formulae, a separate
fabrication plant simulator that captures the interaction between
multiple job streams has been run on product, process routeing,
and machine data provided by a semiconductor wafer plant of
the United Microelectronic Corporation. The data includes 4
representative memory and logic products of multiple tech-
nology generations, 116 tool groups, and 34 back-up relations.
Of the 116 tool groups, 41 are batch tools. The simulator uses
a greedy loading policy. Figure 3 shows a comparison of the

Table 2. Scenarios of simulation.

Scenario 1 2 3 4 5 6 7 8

Tool capacity 2 10 2 10 2 10 2 10
Tool quantity 1 1 10 10 1 1 10 10
Downtime fraction 0.1 0.1 0.1 0.1 0.3 0.3 0.3 0.3
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Fig. 1. The relationship between the average batch size and the
traffic intensity.

resultant data of the average batch size generated by the
simulator and the formulae. The average difference is approxi-
mately 4.93%. Based on the above analysis, the tool require-
ment (Eq. (1)) for batch tools can be calculated as:

qk,t �
Wk,t

(operation–time)t(availability)k(efficiency)k

Bmax
g

Bg

∀k,t

The current industry practice is to use the maximum batch
size or historical data of the average batch size in capacity
analysis. This study shows that formulae, which are based on
the traffic intensity, breakdown time and the maximum batch
size, can be used to predict the average batch size with
good accuracy.

Fig. 2. Characteristic curves for the mean batch size.

Fig. 3. The performance of the proposed batch size formula.

4. The Planning Procedure

A resource portfolio can be represented as an ordered list of
tool quantities, such as s � (n1, n2, %, nN), where ni is the
number of tools in tool group i. The performance measures of
interest to capacity planning are throughput, use, and flow-
time. Since static capacity models provide limited information
about throughput and do not provide flow-time information, an
open queuing network capacity model (Appendix A) was used
to evaluate resource portfolios in this study. This queuing
model is adapted from [2], and uses the following premises:

1. No scrap and rework.
2. Two classes of customer: work-in-process and machine

breakdown.
3. Two types of tool: batch and non-batch tools.

The motivation for this adaptation is twofold. First, many of
the scrap and rework probabilities in [2] are either not available
during capacity planning or are crude estimates for future
products. Secondly, the yield rates of products already in
production are fairly high in well-run factories. By setting the
step yields sy(i,j) to zero (Section 2), a static capacity model
can generate a minimal portfolio. Any portfolio that has fewer
tools in any tool group will not be able to meet the output
requirements. However, this minimal portfolio may not be
sufficient to meet the flow-time performance requirements.

Our portfolio planning procedure makes use of the static
capacity model of Section 2 and the queuing capacity model
(Appendix A). Both models have been implemented as software
modules. The static module is first used to generate an initial
resource portfolio. The portfolio is then evaluated using the
queuing module and then adjusted based on the flow time data.

Figure 4 illustrates the basic concept of portfolio adjustment.
Each portfolio can be characterised by three attributes: through-
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Fig. 4. The strategies of portfolio adjustment.

put, weighted flow-time and investment cost. The throughput
of a portfolio must be greater than the product demands. The
weighted flow-time is computed from the flow-times and pro-
duct demands of all products. For a given portfolio, the quantity
of certain tool groups can be increased (or decreased) to reduce
(or increase) the flow-time while meeting the same level of
throughput requirement. This phenomenon is shown by equi-
throughput curves in the figure. Two curves, such as TP1 and
TP2, represent the relative effectiveness of resource portfolios.
In Fig. 4, the curve TP2 has a higher throughput than curve
TP1. For the same investment cost (the vertical dotted line),
TP2 has a more balanced portfolio, resulting in a higher
throughput and lower flow-time. In contrast, to achieve the
same flow-time (the horizontal dotted line), TP1 will require a
higher investment. Figure 4 reveals three types of portfolio
adjustment action for improving flow-time, investment cost,
and portfolio effectiveness as indicated by the arrows T, C,
and E, respectively.

Portfolio adjustment is an iterative process based on marginal
analysis. For each tool group of a current portfolio, the tool
quantity is increased or decreased by one, to generate neigh-
bouring portfolios. All neighbouring portfolios are evaluated
using the queuing capacity module. The ratio of flow-time
decrement (or increment) over cost increment (or decrement)
is computed. Two separate lists are maintained, one for flow-
time reduction and another for cost reduction. The two lists
can be sorted to rank the order of action types T and C,
respectively. Type E actions are composed of type T and type
C actions, as shown in Fig. 5. Portfolios b and c are obtained
from a current portfolio (point a) by adding and subtracting a
tool, respectively. If the combined effect of two actions (in
the two lists) results in a reduction of both cost and cycle
time, they constitute a type E action (point d).

The above procedure has been applied in an industry case
study. Figure 6 summarises the results of the portfolio planning
process. Two initial tool portfolios are shown at the top of the
figure: one provided by our industry sponsor (denoted by the
number 1), and another generated by the above static model
(denoted by the number 2). Portfolio 1 was deemed infeasible

Fig. 5. Type E adjustment action.

Fig. 6. Tool portfolio adjustment trajectory.

after an analysis showed that the use for some batch tools is
greater than 1.0 based on the batching efficiency formula in
Section 3. Therefore, the tool quantity for those tools is
increased and portfolio 4 is obtained. Portfolios along the curve
connecting points 4 and 5 represent trade-offs between flow-
time and cost. Starting with portfolio 2, a sequence of portfolios
is obtained (from points 2 to 3) by applying the same adjust-
ment procedure. Figure 6 demonstrates that the solution space
of resource portfolios can be searched more effectively using
the developed static and queuing capacity models. The planning
procedure can be used to generate alternative portfolios of
different investment costs and flow-time performances.

Figure 7 illustrates the T action in greater detail for a second
data set of product demands. The resultant configuration and
performance data can be found in Appendix B. (The investment
and flow-time data are business sensitive information, therefore,
they have been normalised. Similarly, machine groups are
identified by numbers.) Let the marginal cost of flow-time be
defined as the ratio of the flow-time reduction to the investment
cost increment that is associated with adding a machine to the
portfolio. The marginal cost is computed for each machine
group and the top five machine groups are listed in the second
column of Appendix B. In each iteration, the top one is
selected. Starting with a given initial portfolio (at the upper-
left of the trade-off curve), a sequence of portfolios is then
generated. This figure shows that 4% more investment (on
critical machine groups) could reduce the flow-time by 27%.

2. Tool Pooling and Dedication

The objective of tool pooling is to reassign workloads such
that the required tool quantities are reduced without significant

Fig. 7. The T action.
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Table 3. Effect of tool pooling.

Tool Workload Required tool Reassigned Improved
type (h) quantity workload tool quantity

A1 550 1 610 1
A2 700 2 640 1

impact on factory performance and productivity. The opport-
unity for tool pooling exists when a tool type can be backed-
up by other types. Table 3 is a numerical example for illustrat-
ing the effect of tool pooling in reducing tool investment cost.
Suppose tool type A1 can be backed-up by type A2 and there
are 650 work hours in a month. Before pooling, a total of
three (1�2) tools will be required. By shifting 60 hours of
workload from tool type B to A, only two tools will be
required. This task is also called tool pooling, because both tool
types will be considered as a pool of tools in capacity planning.

Tool back-up and dedication has been implemented in a
mixed integer linear program. The workloads for each tool are
first calculated by time period. These workloads are then
reassigned according to constraints imposed by dedication
decisions and back-up relationships. Tool dedication is
implemented by specifying tools in the process routeing. The
objective function of the mixed integer linear program is to
minimise the total tool investment. The major constraints are
listed below:

BGk tool groups that can back up tool type k

BEm,k back-up efficiency of tool type m w.r.t. tool type k

Ym,k,t workload shifted to tool m from tool k at time t

Qk,t tool quantity required for tool type k at time t

am,t tool availability

�
k

Ym,k,t � Qm,t am,t ∀m,t

� Y
m�BGk

m,k,t BEm,k � Wk,t ∀k,t

The first inequality is the capacity constraint. For ease of
coding, a tool type is considered a back-up tool for itself.
Thus, workloads may be “shifted” from a tool to itself. Tool
pooling is suitable for either single- or multi-period planning.
Figure 8 shows the effect of tool pooling. The curve at the

Fig. 8. The effect of tool back-up adjustment.

top represents two sequences of portfolios. The curve at the
bottom represents the resultant portfolios after tool pooling is
applied. The relative position of the two sets of portfolios
indicates that tool pooling is an E type action. It should be
cautioned, however, that pooling tools together would change
the dynamics of material flow and set-up frequency. The
“improved” portfolio should be subjected to further analysis
regarding cycle time, use and work-in-process inventory.

6. Conclusions

A resource portfolio planning methodology for semiconductor
wafer fabrication plants is presented in this paper. The method-
ology has three major components: an improved static capacity
model, a queuing capacity model and a portfolio adjustment
procedure. It is shown that batching efficiency of batch tools
can be predicted accurately by using formulae. The method-
ology enables capacity planners to explore effectively the
solution space of portfolios and to evaluate better the trade-
off between flow-time, investment cost and factory throughput.
This methodology has been implemented in a software decision
system, and has demonstrated its capability in generating
superior solution in a benchmarking case study.
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events) is

�̃g � �0,0 �cg � 1

i�1

i�i
g

cg i!
� �0,0

�cgg x

cg! (x � 1)

where �mn denote the probability that m servers are busy and
there are n jobs in the queue and x is the solution lying in
the interval (1,cg


max
g /�g) of the following polynomial equation.

�g

cg

x(
max
g � 1) � � 1 �

�g

cg
�x
max

g � 1 � 0.

The tool use, downtime proportion, queuing delay, and aver-
age batch size (bg) for batch tools are:

�g �
�̃g

1 � E[Bg]/E[Sg]

�inc
g � �̃g � �g

E[Dg] �
�cg,0x

	g(x � 1)2

(va
g � vz

g)
2

bg �
	g · E[Sg]

�g cg
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Appendix B. Portfolio and Performance

Data for Fig. 7.

Table 4.

Iteration Top 5 candidates Tool Investment Cycle
selected cost time

0 Initial portfolio 1.000 1.00
1 48, 82, 42, 49, 26 48 1.001 0.99
2 82, 42, 49, 26, 4 82 1.001 0.98
3 42, 49, 26, 4, 77 42 1.003 0.94
4 49, 26, 4, 77, 83 49 1.004 0.93
5 26, 4, 77, 83, 85 26 1.005 0.91
6 4, 77, 83, 85, 44 4 1.007 0.90
7 77, 83, 85, 44, 75 77 1.009 0.88
8 83, 85, 44, 75, 47 83 1.010 0.87
9 85, 44, 75, 47, 79 85 1.017 0.82
10 44, 75, 47, 79, 21 44 1.019 0.81
11 75, 47, 79, 21, 48 75 1.021 0.79
12 47, 79, 21, 48, 82 47 1.023 0.78
13 79, 21, 48, 82, 71 79 1.024 0.77
14 21, 48, 82, 71, 74 21 1.026 0.77
15 48, 82, 71, 74, 18 48 1.027 0.77
16 82, 71, 74, 18, 16 82 1.027 0.76
17 71, 74, 18, 16, 58 71 1.029 0.76
18 74, 18, 16, 58, 42 74 1.031 0.75
19 18, 16, 58, 42, 14 18 1.033 0.75
20 16, 58, 42, 14, 13 16 1.040 0.73


