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 The purpose of modeling demand in this study is to construct a model to provide 
testing data needed in research, rather than to forecast the demand. The testing data 
will support simulation experiments in research projects on capacity planning.  This 
technical report also demonstrate the procedure of constructing a demand model with 
the geometric Brownian motion process, and the emphasis will be on parameter 
estimation and sample path generation, instead of demand analysis and comparison of 
different modeling approaches. 
 

INTRODUCTION 
 Demand modeling entails the construction of a model to provide an experiment 
environment to describe demand dynamics, instead of forecasting it. It’s not 
straightforward to measure the fitness of model. Nevertheless, the constructed model 
is expected to have “similar properties” of actual demand. 
 In the past decade, demand increases continuous with some unexpected shocks. 
Take the demand quantity of leading edge memory (LEM) ICs as an example (Figure 
1), the upward trend is obvious and unexpected shocks can also be observed. The data 
is in millions of wafer and is adapted from Sematech (2002). 
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Figure 1 Demand dynamic of leading edge memory  

 
 For the time series of demand has an upward trend, rather than oscillation within 
a certain range, it is a non-stationary series. Unpredictable change is also an 
acknowledged characteristic of demand. Besides, that demand will have larger 
variance for farther time periods is also a reasonable description of demand dynamics. 
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Thus, geometric Brownian motion is suitable to model the dynamics of demand.  
 

MODEL CONSTRUCTION 
 In the section, brief introduction to geometric Brownian motion will be given 
first, and the issue of parameter estimation will be explained next. 
 Geometric Brownian motion is usually used to describe the stock price in 
financial literature, such as Dixit and Pindyck (1994), Pindyck and Rubinfeld (1998), 
Tsay (2002). It is a continuous-time random walk series after logarithm 
transformation. The explanation of this property requires some derivations and it is 
put in the appendix. In recent years, Geometric Brownian motion has been used to 
describe the demand quantity in related literature of capacity planning (Benavides et 
al. 1999).  To model demand with it, some introduction is given below. More 
detailed introductions should be referred to more advanced financial literature, such as 
Dixit and Pindyck (1994), Pindyck and Rubinfeld (1998), Tsay (2002). 

Geometric Brownian motion is a special case of Brownian motion, or Wiener 
process. Starting from the equation of geometric Brownian motion, the variable  
stands for demand quantity. The variable  follows geometric Brownian motion, if it 
satisfies the diffusion equation below,  
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Where dtdw tt ε=  is the standard increment of Wiener process, and µ andσ is 

drift parameter and variance parameter respectively.  has identical independent 
standard normal distribution. 

tε

 With simple derivation below, the difference of  after logarithm 
transformation follows a normal distribution, and this implied  itself follows 
lognormal distribution. 
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 For simplicity, let  stand for the difference between  and  in finite 
interval after logarithm transformation as below. 

tr tq 1−tq
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 Let ∆  be the given time interval between two observations. For example, 

equals to one between  and . The distribution of  follows a normal 
distribution with specified parameters,  
∆ tq 1−tq tr
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 With the relations constructed above, the drift and variance parameters of 
geometric Brownian motion can be estimated with the sample mean r  and standard 
error  from the data. Detailed derivations are listed below. rs
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 Having estimated the parameters, sample paths can be generated in either or two 
ways. The first one is to use the difference equation derived from the diffusion 
equation, which is 
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 Alternatively, data can be generated with the results derived with Ito’s lemma. 
This result takes some stochastic calculus to derive. You can check other financial 
literature, such as Tsay (2002) for more details. 
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 As we can observe from the equation above, the distribution of  will have 
higher variance for farther time point t, since it is positive related with t. 

tq

 The second one is a better approach to simulate the demand dynamics, since it’s 
derived with Ito’s lemma. To sample enough observation from , the random number 
generator of S-Plus, or RAND and NORMINV functions of Microsoft Excel can be 
used. Note that  stands for the chosen time interval of the sample paths. 

tε

dt
 

NUMERICAL EXAMPLE 
 With demand data of leading edge memory, the sample mean and standard error 
are derived first. 
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 The estimated drift and variance parameter of geometric Brownian motion can 
be further derived with sample mean and standard error. Here, the parameter∆  for 
annual data. 
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 Finally, the approximated series equation is constructed in the formulation 
derived above, and four sample paths are generated from the equation below. As 
observed, geometric Brownian motion has reasonable performance for the data. 
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Figure 2 Simulated sample paths 
  
 The statistical hypothesis tests to verify the suitability of both original and 
simulated data are not included in the document. However, they have been done and 
the claim that demand follows geometric Brownian motion is acceptable. More issues 
about those hypothesis tests can refer to econometric or financial literature, such as 
Pindyck and Rubinfeld (1998), and Tsay (2002). S-Plus doesn’t provide Dickey-Fuller 
test, which is relevant to test the suitability of original data, and it should be done with 
its add-on S+Finmetrics, or other statistical software. For example, Stata is suited to 
conduct those needed test of time series analysis. 
 

FUTUER IMPLEMENTATION 
 This is a preliminary study of demand modeling with geometric Brownian 
motion, and some issues can be further implemented in the future. Within the domain 
of geometric Brownian motion, the estimators of drift and variance parameters can be 
modified, since there will be better estimators. Besides that, the series equation 
derived can be also revised, and it could be made more precise. Geometric Brownian 
motion may be sufficient to meet our needs. However, there are other diffusion 
equations in scientific research. These implementations need strong quantitative 
abilities in probability and statistics, and some experience and differential equations. 
 

APPENDIX 
 In the last section, the statement “geometric Brownian motion is a 
continuous-time random walk series after logarithm transformation” is verified 
through some not-strict derivations as following. 
 is said to be a time series with random-walk form if  tx
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 Starting from the diffusion equation of geometric Brownian motion, 
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 Thus, the statement is verified since it has a random-walk form. (In fact, it 
should take additional manipulation to make sure that new term of white noise has 
zero mean.) 
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