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Contract design for a supply chain with the potential scarcity of 
components 

 

Abstract 

Contracts pertaining to current business markets are highly varied. Much work has been done 

on contracts with regard to the study of the negative relationship between price and quantity, 

but little has been done that considers the positive and negative relationship together. This 

article investigates contracts for potentially scarce components with two charging schemes. A 

scarce component occurs in supply or demand disruption, with the price and total ordering 

quantity positively correlated. Other components we call non-scarce components, where the 

price and total ordering quantity are negatively correlated. A potentially scarce component 

means that a component may be scarce in the future but no one can predict when. This 

research applies the concept of the Stackelberg-type model with or without Cournot 

competition in the construction of a two-tier supply chain model. The upstream supplier 

acting as the leader decides upon a contract for potentially scarce components. Then the 

downstream manufacturers, being informed of contract information and market situations, 

place an order for the components. We analytically show that our contract can be applied to 

potentially scarce components with the probability of supply disruption. The strategies for the 

supplier are provided to compare profits and decisions based on concerns over the supply 

chain disruption. Some characteristics of the equilibrium decisions and managerial insights 

are suggested for the supplier. 

 

Keywords: Supply chain management, Stackelberg model, positive correlation between price 

and quantity, scarce component, supply chain disruption 

 



1. Introduction 

Optimal supply chain performance has been extensively studied for some time. A supply 

chain is a system of organizations, people, activities, information and resources, set up to 

improve production. Determining how to coordinate every independent economic entity for 

optimal system performance is the critical issue in supply chain management (Li and Wang, 

2007; El Ouardighi and Erickson, 2015). Lau e al. (2007) and Hou et al. (2010) discuss 

supply chain coordination of return (buy-back) contracts, with a risk-sharing mechanism for 

retailers returning to manufacturers all or some of unsold products to get credits. Sales rebate 

contracts are discussed in Taylor (2002) and Wong et al. (2009), where manufacturers pay a 

bonus to the retailer for each unit sold. Taylor and Xiao (2009) compare rebate contracts with 

returns contracts in the context of the retailer forecasting with a forecasting cost to improve 

customer demand information. A revenue-sharing contract is a retailer paying a supplier a 

wholesale price for each unit and where some revenue is gained by the retailer (Cachon and 

Lariviere, 2005; Wang et al., 2004). Some literatures (Lian and Deshmukh, 2009; Ghadge et 

al., 2017) focus on quantity-flexibility (QF or options) contracts. These are concerned with 

purchasing excess units and setting an option reservation quantity to resolve demand 

uncertainty. The firm then flexibly exercises some fraction of the reserved option. Under a 

quantity discount contract, the supplier offers a discount price to induce the retailer to order 

the system optimal quantity. The retailer has to trade-off the price reduction against the 

increase of the cost caused by inventories (Chen, 2015; Won, 2017). 

As supply chains become more complex and expand overseas, they become much more 

vulnerable. Chopra and Sodhi (2004) categorize a variety of risks in supply chains, including 

disruptions, systems, procurement, inventory, etc. In addition, recycling operations also are 

complex processes; De Giovanni (2018) proposed a joint maximization incentive allowing the 

closed-loop supply chain to achieve a triple bottom line so that retailers are economically 

better off through its implementation. Tomlin (2009) shows that to a certain extent a product’s 



lifecycle and the length of disruption are two key factors for supply disruption. Taking a short 

lifecycle product (toy industry) as an example, disruption coinciding with the selling season 

could well have disastrous effects on Christmas products. Hendricks and Singhal (2005) 

indicate negative effects on shareholder value and on operating performance due to supply 

chain disruptions and comment that recovering from disruptions takes a long time and 

constant effort. Srinivasan, Mukherjee and Gaur (2011) state that a good partnership quality 

enhances supply chain performance and they analyze how supply risk, demand risk and 

environmental uncertainty moderate the relationship between partnership quality and supply 

chain performance.  

Moreover, various literatures have contributed to information about how to manage 

supply chain disruption. Some research has discussed supply chain problem on demand 

disruption (Salema et al, 2007; Chen and Xiao, 2009). Regarding the problem of supply 

uncertainty, Tomlin (2006), for example, studies three supply-side tactics, namely sourcing 

mitigation, inventory mitigation and rerouting mitigation, to mitigate risk and to determine a 

firm’s optimal disruption-management strategy. Sourcing from either an unreliable supplier or 

a reliable but more expensive supplier is so-called sourcing mitigation. Ang et al. (2016) 

focus on the sourcing strategy of a manufacturer managing disruption risk in a multi-tier 

supply chain with Tier 1 suppliers and Tier 2 suppliers. A rerouting mitigation is to shift either 

production or transportation methods after a disruption occurs. 

Utility bills, typically, exhibit a positive relationship between unit price and the quantity 

consumed (positive price-quantity relationship), where the greater the usage of utilities, the 

higher is the price per unit. Several studies have discussed such positive relationships of water 

or electricity household consumption (Boland and Whittington 2000; Olson et al. 2003; 

Banal-Estañol and Micola 2011). Similar phenomena can be found in the case of luxury 

goods (McClure and Kumcu 2008). However, the research papers we reviewed above, 

relating to terms of supply chain coordination and supply chain disruption, have been 



discussed under the assumption of a decrease in the unit price with the quantity demanded. 

Only a limited amount of literature has discussed the issue of contract design for consuming 

products relative to the positive and negative price-quantity relationship under the probability 

of the supply chain disruption situation. A shortage of production capacity results in fierce 

competition for scarce components and long lasting ripple effects across the marketplace. 

To address this research gap, this study aims to examine and to optimize the layout of a 

contract for an upstream supplier selling potentially scarce components to downstream 

manufacturers where the supplier cannot predict when the components are likely to become 

scarce (see Fig. 1). Alonso et al. (2007) investigate the causes of material shortage and when 

limitations are expected to emerge. Our study applies the knowledge of game theory and the 

nonlinear form to develop a contract model where the price rises with the quantity demanded 

as a supply chain disruption occurs; otherwise, we apply the rule of quantity discount for 

great demand. Specifically, based on industry experiences, we seek to study the quantity 

relationship of manufacturers’ decisions rather than manufacturers deciding the price. By 

doing so, we intend to assist a supplier’s decision for adopting optimal strategy when facing a 

supply chain disruption that may occur in the future and to develop an informed relationship 

with downstream manufacturers. 

 
Fig. 1. Problem description 

2. Model description and notations 

This research applies the concept of the Stackelberg-type model with or without Cournot 

competition to construct a two-tier supply chain model. To specify supply chain structure we 



make the following assumptions allowing us to simplify the mathematics and yet capture the 

essence of the problem. The supply chain consists of an upstream supplier selling 

homogeneous potentially scarce components to a number of downstream manufacturers. A 

scarce component is a component with a very limited capacity constraint when an unexpected 

disruption occurs in a demand or supply side. Other components we call non-scarce 

components. A potentially scarce component is defined as a component that may become 

scarce in the future, and where the timing of the scarcity cannot be predicted. The supplier 

decides the price-quantity contract. Each manufacturer, under mechanisms of centralization 

and decentralization, engages in an uncooperative game against other manufacturers. It is a 

one-shot game. In other words, there is only one transaction in each period and the 

manufacturers are not allowed to order twice in a short-time period to prevent from arbitrage 

(manufacturers purchase a small quantity of the components at a low price on several 

occasions). 

Let bP  be the price in the business to business (B2B)upstream market as shown in (1). 

We denote   as a real probability of supply chain disruption. In terms of a scarce 

component, the price and total ordering quantity are positively correlated. The standard price 

(the base level of the price, i.e. the price where there is no quantity demanded) is 1a  where 

1 0a   and the sensitivity of the price with respect to the quantity demanded (contract 

variable in our following content) is b  where 0b  . In terms of a non-scarce component, 

the price and total ordering quantity are negatively correlated. We let the standard price be 

2a  where 2 0a   and normalize the sensitivity of the price with respect to the quantity 

demanded to be -1. Let iq  be the ordering quantity for manufacturer i and 
1

n

i
i

Q q


  be 

the total ordering quantity from n manufacturers. 



𝑃௕ = ൜
𝑎ଵ + 𝑏𝑄,        𝑤. 𝑝.   𝜑
  𝑎ଶ − 𝑄,     𝑤. 𝑝.  1 − 𝜑

                    (1) 

This study in terms of the  upstream charging scheme is an extension of Hong et 

al.(2018), where the supplier charges for the components based on two charging schemes, 

namely the uniform charging scheme and the block charging scheme (see Fig. 2). On the one 

hand, under the uniform charging scheme, the supplier, based on the total ordering quantity 

( Q ) of the potentially scarce component, sells at a single price ( bP ) to the manufacturers. 

The total revenue of the supplier is the shaded area in Fig. 2. On the other hand, the 

manufacturers under the block charging scheme pay the varying bP  with the different Q .  

 

Fig. 2. The difference between uniform and block charging schemes 

The expected market value of the upstream market is denoted as 𝛼 = 𝜑𝑎ଵ + (1 − 𝜑)𝑎ଶ, 

indicating the potential market size. For the supplier’s production costs, we denote 𝑐௦ as the 

production cost of the scarce components and denote 𝑐௡௦  as that of the non-scarce 

components. The expected production cost of the components for the supplier is 𝜑𝑐௦ +

(1 − 𝜑)𝑐௡௦, anddenote 𝛽 = 𝜑𝑐௦ + (1 − 𝜑)𝑐௡௦ + 2𝑠. And for manufacturer i, denotes the 

non-negative value 𝑐௜ as its production cost. 

Although a supply chain disruption caused by an acute shortage of key components 

considerably affects upstream transactions between supplier and manufacturers, downstream 

transactions between manufacturers and customers would not be influenced by the supply 

chain disruption. Let 𝑃௠ be market price of the products characterized by a linear function, 



𝑃௠ = 𝑟 − 𝑠𝑄. Following the law of demand in the normal-product case, the demand curve is 

generally downward-sloping; in other words, as price decreases, consumers are willing to buy 

more products. There is a negative correlation between the choke-off price (the base level of 

the market price, i.e. the price at which there is no demand, denoted by r) and the sensitivity 

of the price with respect to the quantity demanded ( s) where 0r   and 0s  . Similarly, 

the base level of the market price is r, indicating the potential market size of the final market. 

 

 
Fig. 3. The decision timeline for the supplier and manufacturers 

Fig. 3 shows the decision timeline for the supplier and manufacturers during the period 

from the supplier offering the contract for the manufacturers to the final products selling to 

customers. The supplier is the leader and the manufacturers are the followers. The supplier 

offers a contract and the manufacturers accept or reject the contract. Guaranteeing the stability 

of the key component supply, the supplier has great bargaining power to determine the forms 

of contracts. Specifically, as an excess of supply occurs, the price and total ordering quantity 

are negatively correlated while they are positively correlated when suffering from a shortage 

of components.  

The following sequence of events occurs in this game. The supplier, at the first stage, 

considers the probability of the supply chain disruption and chooses the contract variable ( b ) 

as the price-quantity relationship of the contract form when the positive correlation occurs 

and normalizes -1 as the relationship in the negative correlation situation. Assuming the 

manufacturers accept the contract, at the second stage, each manufacturer, being informed of 

contract information (contract variables of the price-quantity contract, b and -1) and market 



situations (the probability of supply chain disruption, ), places an order for components 

(ordering quantity, 𝑞௜) to maximize its own profits. Next, the supplier delivers the ordered 

components to the manufacturers and charges the manufacturers the B2B price (𝑃௕) for the 

components based upon the agreed contract. Finally, the manufacturers sell the final products 

to customers, with the market price (𝑃௠) and total ordering quantity (Q). Nevertheless, if the 

manufacturers reject the contract, the game ends and both the supplier and manufacturers gain 

nothing. We summarize the notations in Table 1. 

Table 1. Notation definitions 

Notation Definition 

  The probability of supply chain disruption 

bP  The upstream B2B price between supplier and manufacturer 

mP  The downstream market price between manufacturer and consumer 

1a  The base level of the price (standard price) of the scarce component 

2a  The base level of the price (standard price) of the non-scarce component  

b  The sensitivity of the price with respect to the quantity demanded (contract variable)  

r The base level of the market price (choke-off price) 

s  The sensitivity of the price with respect to the quantity demanded by the consumer 

ic  The production cost for the 𝑖௧௛ manufacturer  

sc  The production cost of the scarce components for the supplier  

nsc  The production cost of the non-scarce components for the supplier ( 0s nsc c  ) 

  The increment of production cost in the small-scale manufacturer 

Q  The total ordering quantity for all manufacturers 

iq  The ordering quantity for the 𝑖௧௛ manufacturer 

 

The remainder of this study is organized as follows. In Section 3 and 4, we develop two 

different manufacturer model and multiple identical manufacturer model under two charging 

schemes. Then, we have numerical illustration in Section 5. Finally, we draw conclusions.  

3. Two Different Manufacturers 

In this section, we discuss the models that an upstream supplier sells homogeneous 

potentially scarce components to two distinctly differently sized manufacturers, where the 



large-scale manufacturer has a small unit production cost c , 0c   and where the 

small-scale manufacturer has a large unit production cost 𝑐 + ∆, 0c   and 0  . In terms 

of the ordering quantity for each manufacturer, this is denoted by 1q  and 2q  for large-scale 

and small-scale manufacturers respectively. 

3.1 Centralized Manufacturers 

Firstly we discuss the centralized manufacturer case with a central planner responsible 

for optimizing the manufacturers’ overall performances, 
1 2d d   . The total ordering 

quantity is 𝑄 = 𝑞ଵ + 𝑞ଶ. 

3.1.1 Uniform Charging Scheme 

In the Stackelberg game, once the decision from the supplier is fixed, the manufacturers 

face a simple decision problem. Accordingly, we solve the manufacturers’ optimal choice of 

any decision from the supplier (see Lemma 1) and then work backward to find the optimal 

choice for the supplier (see Corollary 1). We solve the two-stage sequential game by applying 

a backward induction, moving from the manufacturers’ decisions at the second stage to the 

supplier’s decision problem at the first stage. 

With respect to the symmetric case, let ic c  be the production cost for each 

manufacturer i. The total production costs are composed of total fixed costs and total variable 

costs. The total fixed costs, like premises and machinery, are constant as output changes. The 

total variable costs increase at an accelerating rate as output increases because of the law of 

diminishing marginal returns, like the increased number of workers. Two of the most popular 

forms of the production cost are the quadratic and the transcendental logarithmic (Phillips, 

2014). Consequently, the production cost function for the manufacturers used in this study is 

assumed to be quadratic, 
2

2
icq

. The expected total profit for the centralized manufacturers is 

given by  



   

     

1 2
1 2

2
1

1 2 1
,

2
2

1 2 2

m ax (1 )
2

                       + (1 )
2

d d m
q q

m

c q
P a b Q a Q q

c q
P a b Q a Q q

 

 

 
            

 
           
  

, 
(2) 

where 
mP r sQ   and 

1 2Q q q  . 

The above summation in the objective function is the expected revenue minus the 

expected cost of the component bought from the supplier and minus the production cost in the 

case of the two different business scales of the manufacturers. 

Lemma 1. Given the contract variable b of the price-quantity contract, if 

1 2

2 2 2 2 , 2 2 2 2
( , )

2 2 2 2, 2 2 2 2

b s c b s
H q q

b s b s c

   
   

         
             

 is negative semi-definite, 

then the best responses of the large-scale and small-scale manufacturers under the uniform 

charging scheme are:  

*
1 2

( )( )

2 4 2 2 4 4 2 4

r c
q

b bc c s c c cs c


   

  


             
  (3) 

*
2 2

( )

2 4 2 2 4 4 2 4

c r
q

b b c c s c c cs c


   




             
 (4) 

where  1 21a a     . 

We have the relationship of the ordering quantity for two manufacturers ( *
1q  and *

2q ) 

at the second stage and then we return to the first stage to solve the optimal decision for the 

supplier. The supplier’s expected profit function is given by  

     
2 2

1 2m ax 1
2 2

s ns
up

b

c Q c Q
a bQ Q a Q Q 

   
          

    ,      (5) 
where 

1 2Q q q  .  

The supplier proposes the contract with the different forms of contract variables of the 

price-quantity contract (b and -1) and anticipates that both of the manufacturers would 

respond accordingly to the decision from the supplier by maximizing the manufacturers’ own 

profits (choose their own best responses, *
1q and *

2q ).  

Corollary 1. Under the uniform charging scheme, the results of the centralized two different 

manufacturer model are given below.  

 
 * 2 ( 2 ) ( 1 ) (1 ) ( )(3 )1

2 ( )( 2 )

c s r s c c r
b

r c

     
 

             
 

  
 (6) 



  * *
1 2

1 ( )( ) 1 ( )
, ,

2 ( )( ) 2 ( )( )

c r c r
q q

c c c c c c

 
   

    
          

 (7) 
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* 2 ( )1

8 ( )( )up

c r

c c c


 

  
 

   
 (8) 

  
1 2

* * 1 ( )( )( ) 1 ( )( )
, ,

4 ( )( ) 4 ( )( )d d

c r r c r r

c c c c c c

   
   

      
            

 (9) 
 

3.1.2 Block Charging Scheme 

Under the block charging scheme, the expected total profit for the centralized 

manufacturers is given by 

     

       
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1 2

2
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1
,

2
1 2 2

2

2 2
m a x 1

2 2 2

2 2
                  1

2 2 2

d d m
q q

m

a b Q a Q c q
P q

a b Q a Q c q
P q

 

 

  
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 
    

     
 

, 
(10) 

where 
mP r sQ   and 

1 2Q q q  .  

The above summation in the objective function is the expected revenue minus the 

expected cost of the component bought from the supplier and minus the production cost in the 

case of the two different business scales of the manufacturers. 

Lemma 2. Given the contract variable (b) of the price-quantity contract, if 

1 2

2 1 , 2 1
( , )

2 1, 2 1

b s c b s
H q q

b s b s c

   
   

         
             

 is negative semi-definite, then the 

best responses of the large-scale and small-scale manufacturers under the block charging 

scheme are:  

*
1 2

( ) ( )

2 2 2 4 2

r c
q

b b c c s c c c s c


   

  


             
 (11) 

*
2 2

( )

2 2 2 4 2

c r
q

b b c c s c c c s c


   




             
 (12) 

where  1 21a a     . 

We have the relationship of the ordering quantity for two manufacturers ( *
1q  and *

2q ) 

at the second stage and then move back to the first stage to solve the optimal decision for the 

supplier. The supplier’s expected profit function is given by  

     2 2
1 22 2

m ax 1
2 2 2 2

s n s
u p

b

a b Q a Qc Q c Q
Q Q 

    
        

    , 
(13) 

where 
1 2Q q q  .  

The supplier proposes the contract with the different forms of contract variables of the 

price-quantity contract (b and -1) and anticipates that both of the manufacturers would 



respond accordingly to the decision from the supplier by maximizing the manufacturers’ own 

profits (choosing their own best responses, *
1q and *

2q ).  

Corollary 2. Under the block charging scheme, the results of centralized two different 

manufacturer models are given below.  
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 (17) 
 

Proposition 1. In the centralized manufacturer model, no matter under the uniform charging 

scheme or block charging scheme, as long as the potential market size of the upstream B2B 

market is large enough (α >
௥

ଶ
), the contract variable of the scarce components will decrease 

with the increment of the production cost in the small-scale manufacturer.  

3.2 Decentralized Manufacturers 

We decentralize two manufacturers and each manufacturer pursues its own maximum 

profit, ∏  ௗభ
 and ∏  ௗమ

. The total ordering quantity is given by 𝑄 = 𝑞ଵ + 𝑞ଶ. 

3.2.1 Uniform Charging Scheme 

The production cost function for the manufacturers here is quadratic 
௖௤೔

మ

ଶ
. We let ∏  ௗభ

 

and ∏  ௗమ
 be the profit of the large-scale and small-scale manufacturers as shown in (18) 

and (19) respectively, where 
mP r sQ   and 

1 2Q q q  .  
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The summation of the profit functions in (19) and (20) are the expected revenue minus 

the expected cost of the component bought from the supplier and minus the production cost. 

Lemma 3.  Given the contract variable b of the price-quantity contract, if 

 2 1 1c b s        and  2 1 1c b s          are satisfied, then the best 



responses of the large-scale and small-scale manufacturers under the uniform charging 

scheme are: 

𝑞ଵ
∗ =

(ఊିఈ)(ିଵା௦ାఝା௕ఝା௖ା∆)

ି(ିଵା௦ାఝା௕ఝ)మା(ିଶାଶ௦ାଶఝାଶ௕ఝା௖)(ିଶାଶ௦ାଶఝାଶ௕ఝା௖ ∆)
   (20) 

𝑞ଶ
∗ =

(ఊିఈ)(ିଵା௦ାఝା௕ఝା )

ି(ିଵା௦ାఝା௕ఝ)మା(ିଶାଶ௦ାଶఝାଶ௕ఝା )(ିଶାଶ௦ାଶఝାଶ௕ఝା௖ ∆)
   (21) 

where  1 21a a     . 

Revisiting the first stage, the supplier proposes the contract with the different forms of 

contract variables of the price-quantity contract (b and -1) and anticipates that both of the 

manufacturers would respond accordingly to the decision from the supplier by maximizing 

the manufacturers’ own profits (choosing their own best responses, *
1q and *

2q ). The 

supplier’s expected profit function is given by  
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    , 
(20) 

where 
1 2Q q q   is the total ordering quantity from two different manufacturers. The 

above objective function is the expected revenue minus the production cost with the 

probability of a supply chain disruption.  

3.2.2 Block Charging Scheme 

In this study, a backward induction is applied to solve the Stackelberg-type model. 

Similarly 
1d is the profit for the large-scale manufacturer with a small production cost c 

while 
2d is the profit for the small-scale manufacturer with a large production cost c   . 

The profits for the manufacturers are as follows, where 
mP r sQ   and 

1 2Q q q  .    
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(22) 

The summation of the profit functions in (23) and (24) are the expected revenue minus 

the expected cost of the component bought from the supplier and minus the production cost.  

Lemma 4. Given the contract variable (b) of the price-quantity contract, if 



 1 2 1c b s        and  1 2 1c b s          are satisfied, then the block 

charging scheme are:  
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The supplier proposes the contract and anticipates that both of the manufacturers would 

respond accordingly to the decision from the supplier by maximizing the manufacturers’ own 

profits (choosing their own best responses, *
1q and *

2q ). The supplier’s expected profit 

function is given by:  
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where 
1 2Q q q   is the total ordering quantity from two different manufacturers.  

4. Multiple Identical Manufacturers 

4.1 Centralized Manufacturers 

In the multiple identical manufacturers model, all multiple manufacturers are assumed to 

be symmetric. We focus on the centralized manufacturers, with a central planner responsible 

for optimizing the manufacturers’ overall performances (
1

i

n

d
i

 ) as shown in Fig. 4. 

Considering the symmetric case, iq q  for all i, the total ordering quantity of the 

manufacturers is given by 
1

n

i
i

Q q nq


  . 

 
Fig. 4. The supply chain with the centralized manufacturers 



4.1.1 Uniform Charging Scheme 

As assumed in Section 2, the production cost function for the manufacturers used in this 

study is assumed to be 
௖௤೔

మ

ଶ
 for simplicity. Applying the concepts of the expected value and 

uniform charging scheme, the expected total profit for the centralized manufacturers is given 

by:  
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where 
mP r sQ  . The above summation in the objective function is the expected revenue 

minus the expected cost of the components bought from the supplier and minus the 

production cost of the products sold to customers. 

Lemma 5. Given the contract variable (b) of the price-quantity contract, if 

 2 1 1c b s       , then the best response of the manufacturers under the uniform 

charging scheme is:  
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2 2 2 2i
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q

ns bn n c n
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   
,  (27) 

where  1 21a a     . 

We have the relationship of the ordering quantity for each manufacturer ( *
iq ) at the 

second stage and then moving back to the first stage is used to solve the optimal decision for 

the supplier. Similarly, the production cost for the supplier is assumed to be quadratic. The 

supplier’s expected profit function is given by:  
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, (28) 

where Q nq  is the total ordering quantity from all manufacturers. The above objective 

function is the expected revenue minus the production cost with the probability of a supply 

chain disruption. 

The supplier proposes the contract with different forms of contract variables of the 

price-quantity contract (b and -1) and anticipates that all manufacturers would respond 



accordingly to the decision from the supplier by maximizing the manufacturers’ own profits 

(choose their own best responses, *
iq ). 

Corollary 3. Under the uniform charging scheme, the results of the centralized multiple 

identical manufacturer model are given below:  
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4.1.2 Block Charging Scheme 

Here we discuss the block charging scheme, with a central planner responsible for 

optimizing the manufacturers’ overall performances, 
1

i

n

d
i

 . We solve the two-stage 

sequential game by applying a backward induction.  

Considering the symmetric case, we let 
1

n

i
i

Q q nq


   be the total ordering quantity 

of the manufacturers where iq q  and let ic c  be the production cost for each 

manufacturer i respectively. The expected total profit for the centralized manufacturers in the 

block charging scheme is given by: 
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where 
mP r sQ  .  

Lemma 6. Given the contract variable b of the price-quantity contract, if 

 1 2 1c b s     , then the best response of the manufacturers under the block 

charging scheme is: 
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where  1 21a a     . 

Similarly, we move backward to the supplier’s decision. The supplier’s expected profit 

function at the first stage is  
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, (35) 

where Q n q  is the total ordering quantity from all manufacturers. 

The supplier proposes the contract with different forms of contract variables of the 

price-quantity contract (b and -1) and anticipates that all manufacturers would respond 

accordingly to the decision from the supplier by maximizing the manufacturers’ own profits 

(choose their own best responses, *
iq ). 

Corollary 4. Under the block charging scheme, the results of the centralized multiple 

identical manufacturer model are given:  
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Proposition 2. In the centralized manufacturer model, (i) the uniform charging scheme 

returns the identical ordering quantity and profits for both supplier and manufacturers to those 

under the block charging scheme, but (ii) the contract variables are different under the 

uniform and block charging schemes.  

In the centralized multiple identical manufacturer model, we may have an intuition that 

the supplier earns more profit by adopting the uniform charging scheme because the 

manufacturers are required to pay a high price (a high *b ) even though they are acquiring a 

low volume (Q) of key components. Proposition 2 shows the counter intuition that the 



uniform and block charging schemes return the same ordering quantity for each manufacturer 

( *
iq ) and profits for both supplier and manufacturers ( *

up  and *
d ). Proposition 2 implies 

that the supplier, acting as a leader, manipulates the contract variable (b) so that the contract 

variables are not the same, but the ordering quantity and profits for both supplier and 

manufacturers remain the same. 

Proposition 3. In the centralized manufacturer model, the manufacturers would accept the 

contract only if the potential market size of the final market is larger than that of the upstream 

B2B market, i.e., r  . 

The implication of r   shows the potential market size of the final market is larger 

than that of the upstream B2B market, allowing manufacturers to make profits under the 

contract. 

Proposition 4. In the centralized manufacturer model, as long as the potential market size of 

the upstream B2B market is large enough (
3

r  ), the contract variable of the scarce 

components will increase with the number of the manufacturers.  

A large enough upstream B2B market offers opportunities for firms including supplier and 

manufacturers. Hence, the supplier’s profit grows as the number of manufacturers increases, 

and the contract variable (b) also increases. 

Proposition 5. In the centralized manufacturer model, (i) as the number of the manufacturers 

increases, the ordering quantity for each manufacturer falls. (ii) as the number for the 

manufacturers increases, the total ordering quantity rises.  

It is intuitive that with the number of the manufacturers the total ordering quantity grows 

but the ordering quantity for each manufacturer decreases.  

Proposition 6. In the centralized manufacturer model, we see that the increase in the number 

of the manufacturers leads to an increase in the supplier’s profit under both uniform and block 

charging schemes and that an increase in the number of manufacturers results in a decrease in 



each manufacturer’s profit.  

As the total ordering quantity increases, the supplier sells more components and the 

average cost decreases. In addition, the supplier’s profit increases. On the other hand, with 

more manufacturers, the total supply of final products will be larger and the market price will 

fall, thus leading to a drop in each manufacturer’s profit. 

4.2 Decentralized Manufacturers 

Next to the centralized-manufacturer case, another widely discussed case involves the 

decentralized manufacturers as shown in Fig. 5. In the case of decentralized manufacturers, 

each manufacturer maximizes its own profit (
id ), thereby allowing us to apply the concept 

of the Cournot competition among the manufacturers. All manufacturers, not cooperating with 

one another, sell homogeneous products to customers. Considering the symmetric case, the 

production cost ic c  for all manufacturers, but the total ordering quantity in the 

decentralized case is 
1

n

i i j
i j i

Q q q q
 

    , where jq  is the other manufacturers except 

for manufacturer i. 

  

Fig. 5. The supply chain with the decentralized manufacturers 

4.2.1 Uniform Charging Scheme 

Now we examine the decentralized manufacturer case with the uniform charging scheme. 

The expected profit for each decentralized manufacturer i at the second stage is given by:  
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where 
mP r s Q  . 

Lemma 7. Given the contract variable (b) of the price-quantity contract, if 

 2 1 1c b s       , then the best response of the manufacturers under the uniform 

charging scheme is:  
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(41) 

where  1 21a a     . 

We have the relationship of the ordering quantity for each manufacturer ( *
iq ) at the 

second stage and then we return to the first stage to solve the optimal decision for the supplier. 

The expected profit for the supplier is  
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, (42) 

where *Q nq  is the total ordering quantity from all manufacturers. 

The supplier proposes the contract with different forms of contract variables of the 

price-quantity contract (b and -1) and anticipates that all manufacturers would respond 

accordingly to the decision from the supplier by maximizing the manufacturers’ own profits 

(choosing their own best responses, *
iq ). 

Corollary 5. Under the uniform charging scheme, the results of the multiple identical 

manufacturer model are given below.  
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4.2.2 Block Charging Scheme 

Similar to Section 3.2.2, we solve the two-stage sequential game by applying the 

backward induction. The block charging scheme’s expected profit for each decentralized 

manufacturer i at the second stage is: 
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where mP r sQ  .  

Lemma 8. Given the contract variable (b) of the price-quantity contract, if 

 1 2 1c b s    , then the best response of the manufacturers under the block charging 

scheme is:  
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where  1 21a a     . 

Moving back to the first stage, the expected profit for the supplier is  
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where *Q nq  is the total ordering quantity from all manufacturers. 

Corollary 6. Under the block charging scheme, the results of decentralized multiple identical 

manufacturer model are given:  
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Proposition 7. In the decentralized manufacturer model, (i) the uniform charging scheme 

returns the identical ordering quantity and profits for both supplier and manufacturers as those 

under the block charging scheme, but (ii) the contract variables are different under the 

uniform and block charging schemes. 



The supplier, acting as a leader, manipulates the contract variable (b) so that the contract 

variables are not the same, but the ordering quantity and profits for both supplier and 

manufacturers remain the same.  

Proposition 8. In the decentralized manufacturer model, (i) as the number of manufacturer 

increases, the ordering quantity for each manufacturer decreases (ii) and as the number of the 

manufacturers increases, the total ordering quantity also increases.  

It becomes obvious that as the total ordering quantity by manufacturers grows, the 

ordering quantity for each manufacturer decreases. 

5. Conclusions 

Optimal supply chain performance has been extensively studied over the past years. In 

this thesis, we present the Stackelberg-type models with or without Cournot competition 

under the different charging schemes and centralized/decentralized mechanisms of the 

manufacturers. The objective of this thesis is to investigate the making of a contract related to 

dealing with potentially scarce components by discussing two types of models, namely the 

multiple identical manufacturers model and the two different manufacturers model  

The analytical results show that in the multiple-identical-manufacturer models of the 

centralized and decentralized cases, the uniform and block charging schemes return the same 

profits for the supplier and manufacturers. The more manufacturers there are, the more likely 

are the profits for the suppliers; the more manufacturers, the less profits for each manufacturer. 

In the centralized-multiple-identical models as long as the potential market size of the B2B 

market is large enough, the contract variable of the scarce components increases with the 

number of the manufacturers. In the centralized-two-different-manufacturers models as long 

as the potential market size of the B2B market is large enough, the contract variable of the 

scarce components decreases with the incremental production cost of the small-scale 

manufacturer. We also conclude from the numerical studies that in the multiple identical 

manufacturer model the supplier gains more profits than in the centralized manufacturer case. 



In the two different manufacturers model, the scenario of the centralized manufacturer case 

under the block charging scheme outperforms all the other scenarios.  

In summary, the results presented in this study provide a supplier with valuable insights 

into designing a contract applicable to the potentially scarce component situation and to the 

probability of a supply chain disruption. There are several potential future research 

opportunities. One future research direction is to investigate the contract design in a broader 

supply chain context. It will be interesting to extend the supply chain from a two-tier to a 

multi-tier supply chain problem, with demand uncertainty in the final market. Another 

possible extension is to consider shortage costs, opportunities lost in production and business 

activities caused by failure to meet market demand.  
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Appendix 
Proof of Lemma 1.  

To determine that expected profit function (2) is concave requires showing that its Hessian is 

negative semi-definite (concavity condition of ∏ 𝑑ଵ + ∏ 𝑑ଶ in 𝑞ଵ and 𝑞ଶ). The Hessian 

matrix is as follows.  

𝐻(𝑞ଵ, 𝑞ଶ) = ൬
−2𝑏𝜑 − 2𝜑 − 2𝑠 + 2 − 𝑐, −2𝑏𝜑 − 2𝜑 − 2𝑠 + 2

−2𝑏𝜑 − 2𝜑 − 2𝑠 + 2, −2𝑏𝜑 − 2𝜑 − 2𝑠 + 2 − 𝑐 − ∆
൰ 

The expected profit function (2) is maximized as the optimal ordering quantities for both 

manufacturer (𝑞ଵ
∗ and 𝑞ଶ

∗) from the first-order condition are satisfied under the concavity 

condition of ∏ 𝑑ଵ + ∏ 𝑑ଶ in 𝑞ଵ and 𝑞ଶ. 

 

𝑞ଵ
∗ = −

∆௔భఝି∆௔మఝା௔భ௖ఝି௔మ௖ఝ ∆௔మି∆௥ା௔మ௖ି௖௥

ଶ∆௕ఝାସ௕௖ఝା∆௖ାଶ∆ఝାଶ∆௦ା௖మାସ௖ఝାସ௖௦ିଶ∆ିସ௖
  

𝑞ଶ
∗ = −

(௔భఝି௔మఝା௔మି௥)௖

ଶ∆௕ఝାସ௕௖ఝା∆௖ାଶ∆ఝାଶ∆௦ା௖మାସ௖ఝାସ௖௦ିଶ∆ିସ௖
  

▓ 

Proof of Lemma 2.  

To determine that expected profit function (10) is concave requires showing that its Hessian is 

negative semi-definite (concavity condition of ∏ 𝑑ଵ + ∏ 𝑑ଶ in 𝑞ଵ and 𝑞ଶ). The Hessian 

matrix is as follows.  

𝐻(𝑞ଵ, 𝑞ଶ) = ൬
−𝑏𝜑 − 𝜑 − 2𝑠 + 1 − 𝑐, −𝑏𝜑 − 𝜑 − 2𝑠 + 1

−𝑏𝜑 − 𝜑 − 2𝑠 + 1, −𝑏𝜑 − 𝜑 − 2𝑠 + 1 − 𝑐 − ∆
൰   

The expected profit function (10) is maximized as the optimal ordering quantities for the both 

manufacturers (𝑞ଵ
∗ and 𝑞ଶ

∗) from the first-order conditions are satisfied under the concavity 

condition of ∏ 𝑑ଵ + ∏ 𝑑ଶ in 𝑞ଵ and 𝑞ଶ. 

𝑞ଵ
∗ = −

∆௔భఝି∆௔మఝା௔భ௖ఝି௔మ௖ఝ ∆௔మି∆௥ା௔మ௖ି௖௥

∆௕ఝାଶ௕௖ఝା∆௖ା∆ఝାଶ∆௦ା௖మାଶ௖ఝାସ௖௦ି∆ିଶ௖
  

𝑞ଶ
∗ = −

(௔భఝି௔మఝା௔మି௥)௖

∆௕ఝାଶ௕௖ఝା∆௖ା∆ఝାଶ∆௦ା௖మାଶ௖ఝାସ௖௦ି∆ିଶ௖
  

▓ 

 



Proof of Lemma 3.  

Take the second partial derivative of both expected profit function (18) and (19) with respect 

to 𝑞ଵ and 𝑞ଶ respectively.  

డమ ∏  ೏భ

డ௤భ
మ = −2𝑏𝜑 − 2𝜑 − 2𝑠 − 𝑐 + 2  

డమ ∏  ೏మ

డ௤మ
మ = −2𝑏𝜑 − 2𝜑 − 2𝑠 − 𝑐 − ∆ + 2  

We then have the concavity condition from the second order condition as follows.  

c > −2[𝜑(𝑏 + 1) + 𝑠 − 1] 

c + ∆> −2[𝜑(𝑏 + 1) + 𝑠 − 1] 

The expected profit function (18) is maximized as the optimal ordering quantity for the 

large-scale manufacturer (𝑞ଵ
∗) from the first-order condition is satisfied under the concavity 

condition of ∏ 𝑑ଵ in 𝑞ଵ. 

𝑞ଵ
∗ = −

[ఝ௔భା(ଵିఝ)௔మିఊ](ఝ௕ାఝା௦ା௖ା∆ିଵ)

ଶ(ఝ௕ାఝା௦)(ଶ௖ା∆ିଷ)ାଷఝమ௕(௕ାଶ)ା଺ఝ௦(௕ାଵ)ା௖(∆ିସ)ାଷ(ఝమା௦మାଵ)ା௖మିଶ∆
  

Similarly, the expected profit function (19) is maximized as the optimal ordering quantity for 

the small-scale manufacturer (𝑞ଶ
∗) from the first-order condition is satisfied under the 

concavity condition of ∏ 𝑑ଶ in 𝑞ଶ. 

𝑞ଶ
∗ = −

ఝ[(௔భି௔మ)(ఝ௕ାఝା௦ା௖)ି(௔భିଶ௔మ)ା௕(௔మି௥)]ି௥(ఝା௦ା௖ିଵ)

ଶ(ఝ௕ାఝା௦)(ଶ௖ା∆ିଷ)ାଷఝమ௕(௕ାଶ)ା଺ఝ௦(௕ାଵ)ା௖(∆ିସ)ାଷ(ఝమା௦మାଵ)ା௖మିଶ∆
  

▓ 

Proof of Lemma 4.  

Take the second partial derivative of the expected profit function (23) and (24) with respect to  

𝑞ଵ and 𝑞ଶ respectively. 

డమ ∑ ∏  ೏೔
మ
೔సభ

డ௤భ
మ = −𝑏𝜑 − 𝑐 − 𝜑 − 2𝑠 + 1  

డమ ∑ ∏  ೏೔
మ
೔సభ

డ௤మ
మ = −𝑏𝜑 − ∆ − 𝑐 − 𝜑 − 2𝑠 + 1  

We then have the following concavity condition from the second order condition.  

c > −[𝜑(𝑏 + 1) + 2𝑠 − 1]  



c + ∆> −[𝜑(𝑏 + 1) + 2𝑠 − 1] 

The expected profit function (23) is maximized as the optimal ordering quantity for the 

large-scale manufacturer (𝑞ଵ
∗) from the first-order condition is satisfied under the concavity 

condition of ∏ 𝑑ଵ in 𝑞ଵ. 𝑞ଶ
∗ =

−
ଶ[ఝ௔భା(ଵିఝ)௔మି௥](ఝ௕ାఝାଶ௦ାଶ௖ାଶ∆ିଵ)

ଶ(ఝ௕ାఝାଶ )(ସ௖ାଶ∆ିଷ)ାଷఝమ௕(௕ାଶ)ାଵଶఝ (௕ାଵ)ା௖ସ(∆ିଶ)ାଷ(ఝమାସ௦మାଵ)ସ(௖మି∆)
 

 

Similarly, the expected profit function (24) is maximized as the optimal ordering quantity for 

the small-scale manufacturer (𝑞ଶ
∗) from the first-order condition is satisfied under the 

concavity condition of ∏ 𝑑ଶ in 𝑞ଶ. 

 𝑞ଶ
∗ = −

ఝ[(௔భି௔మ)(ఝ௕ାఝାଶ௦ାଶ௖)ି(௔భିଶ௔మ)ା௕(௔మି௥)]ି௥(ఝାଶ௦ାଶ௖ିଵ)

ଶ(ఝ௕ାఝାଶ )(ସ௖ାଶ∆ିଷ)ାଷఝమ௕(௕ାଶ)ାଵଶఝ௦(௕ାଵ)ା௖ସ(∆ିଶ)ାଷ(ఝమାସ௦మାଵ)ସ(௖మି∆)
 

▓ 

Proof of Lemma 5.  

At the second stage of the Stackelberg game, take the second partial derivative of the 

expected profit function: 

max
௤೔

∑ ∏ = ∑ {[𝑃௠ − 𝜑(𝑎ଵ + 𝑏𝑄) − (1 − 𝜑)(𝑎ଶ − 𝑄)]𝑞௜ −
௖௤೔

మ

ଶ
௡
௜ୀଵ }ௗ೔

௡
௜ୀଵ   

with respect to 𝑞ଵ, 𝑞ଶ… and 𝑞௡  and solve a set of simultaneous equations. From the 

second order condition, we have the optimal ordering quantity for each manufacturer k.  

డమ ∑ ∏  ೏೔
೙
೔సభ

డ௤ೖ
మ = −2𝑛(𝑠 + 𝜑𝑏 + 𝜑 +

௖

ଶ
− 1)  

Because of the symmetric case, we take the second partial derivative of the profit function 

with respect to 𝑞௜, allowing us to simply solve the simultaneous equations. Hence, the 

second-order condition is  

డమ ∑ ∏  ೏೔
೙
೔సభ

డ௤೔
మ = −2𝑛(𝑠 + 𝜑𝑏 + 𝜑 +

௖

ଶ
− 1)  

 

We have the concavity condition of ∑ ∏  ௗ೔

௡
௜ୀଵ  in 𝑞௜ from the second order condition.  



𝑐 > −2[𝜑(𝑏 + 1) + 𝑠 − 1]  

Under the concavity condition of ∑ ∏  ௗ೔

௡
௜ୀଵ  in 𝑞௜, the expected profit function is 

maximized as the optimal ordering quantity for each manufacturer 𝑞௜
∗ from the first-order 

condition is satisfied.  

𝑞௜
∗ = −

ఈି௥

ଶ௡௦ାଶఝ௕௡ାଶఝ௡ା௖ିଶ௡
 , 

where αhe𝑎ଵ + (1 − 𝜑)𝑎ଶ.  

▓ 

Proof of Lemma 6.  

We could simply take the partial derivative of the expected total profit for the centralized 

manufacturers in the block charging scheme:  

max
௤೔

∑ ∏ = ∑ {ቂ𝑃௠ − 𝜑 ቀ
ଶ௔భା௕ொ

ଶ
ቁ − (1 − 𝜑) ቀ

ଶ௔మିொ

ଶ
ቁቃ 𝑞௜ −

௖௤೔
మ

ଶ
௡
௜ୀଵ }ௗ೔

௡
௜ୀଵ ,   

where 𝑃௠ = 𝑟 − 𝑠𝑄 , with respect to 𝑞௜  under the symmetric case. Therefore, the 

second-order condition is  

డమ ∏  ೏

డ௤೔
మ = −2𝑛𝑠 − 𝜑𝑏𝑛 − 𝜑𝑛 − 𝑐 + 𝑛  

Then we have the following concavity condition of ∑ ∏  ௗ೔

௡
௜ୀଵ  in 𝑞௜ from the second order 

condition. 

𝑐 > −𝑛[𝜑(𝑏 + 1) + 2𝑠 − 1]  

Under the concavity condition of ∑ ∏  ௗ೔

௡
௜ୀଵ  in 𝑞௜, the expected profit function is 

maximized as the optimal ordering quantity for each manufacturer (𝑞௜
∗) from the first-order 

condition is satisfied:  

𝑞௜
∗ = −

ఈିఊ

ଶ௡௦ାఝ௕௡ାఝ௡ା௖ି௡
, where α 𝜑𝑎ଵ + (1 − 𝜑)𝑎ଶ. 

▓ 

Proof of Lemma 7.  

Considering the symmetric case, we take the second order condition of the profit function 

∏  ௗ೔
 with respect to 𝑞௜.  



డమ ∏  ೏೔

డ௤೔
మ = −2(𝑠 + 𝜑𝑏 + 𝜑 +

௖

ଶ
− 1)  

Then the concavity condition of ∏  ௗ೔
 in 𝑞௜ is  

𝑐 > −2[𝜑(𝑏 + 1) + 𝑠 − 1]  

Under the concavity condition of ∏  ௗ೔
in 𝑞௜, the expected profit function (42) is maximized 

as the optimal ordering quantity for each manufacturer (𝑞௜
∗) from the first-order condition 

holds:  

𝑞௜
∗ = −

(௕ఝାఝା௦ିଵ) ∑ ௤ೕାೕಯ೔ ఈିఊ

ଶ(௕ఝାఝା௦ିଵ)ା௖
 , where 𝛼 = 𝜑𝑎ଵ + (1 − 𝜑)𝑎ଶ.  

Considering the symmetric case, we let 𝑞௝ = 𝑞௜
∗ and ∑ 𝑞௝ = (𝑛 − 1)𝑞௜

∗
௝ஷ௜  for all the other 

manufacturer j. Then the ordering quantity for each manufacturer i is  

𝑞௜
∗ = −

ఈିఊ

(௡ାଵ)[ఝ(௕ାଵ)ା௦ିଵ]ା௖
. 

Proof of Lemma 8.  

Considering the symmetric case, we take the second derivative of ∏  ௗ೔
 with respect to 𝑞௜ 

as follows.  

డమ ∏  ೏

డ௤೔
మ = −2𝑠 − 𝜑𝑏 − 𝜑 − 𝑐 + 1  

Then we derive the concavity condition from the above second-order condition.  

𝑐 > −𝜑(𝑏 + 1) − 𝑠 + 1  

Under the concavity condition of ∏  ௗ೔
 in 𝑞௜, the expected profit for each of the  

decentralized manufacturer (49) is maximized as the optimal ordering quantity for each 

manufacturer (𝑞௜
∗) from the first-order condition is satisfied.  

𝑞௜
∗ = −

௤ೕ[(௡ିଵ)(௕ఝାఝାଶ௦ିଵ)]ିଶ(ఈି௥)

ଶ(௕ఝାఝାଶ௦ିଵ)ାଶ௖
  

Considering the symmetric case, we let 𝑞௝ = 𝑞௜
∗ and ∑ 𝑞௝ = (𝑛 − 1)𝑞௜

∗
௝ஷ௜  for all the other 

manufacturer j. Consequently, the ordering quantity for each manufacturer is given by  

𝑞௜
∗ = −

ଶ(ఈି௥)

(௡ାଵ)[ఝ(௕ାଵ)ାଶ௦ିଵ]ାଶ௖
  

▓ 



Proof of Corollary 1.  

Take the second-order condition of ∏  ௨௣  with respect to b  and the concavity condition 

∏  ௨௣  is as below.  

డమ ∏  ೠ೛

డ௕మ = −
{(∆ାଶ௖)[ఈ(ିଶାଷఉାଶఝାଶ௦ାଶ௖)ି௥(ଶାଷఉିଶఝିଶ௦ା௖)]ା௖∆(ଶఈି௥)}

ఝ(ఈା௥)(∆ାଶ௖)
< 0  

From the first-order condition, the supplier’s optimal contract variable under a supply chain 

disruption is:  

𝑏∗ = −
ଵ

ଶ

{ଶ(∆ାଶ௖)[ఈ(ିଵାఉାఝା௦)ି௥(ଵାఉିఝି௦)]ା௖(∆ା௖)(ଷఈି௥)}

ఝ(ఈା௥)(∆ାଶ௖)
.   

Where α = 𝜑𝑎ଵ + (1 − 𝜑)𝑎ଶ and 𝛽 = 𝜑𝑐௦ + (1 − 𝜑)𝑐௡௦ + 2𝑠. 

The concavity condition holds. Each of the manufacturer’s optimal decision (𝑞ଵ
∗ and 𝑞ଶ

∗) 

under the concavity condition of ∏  ௨௣  in b is:  

(𝑞ଵ
∗, 𝑞ଶ

∗) = (
ଵ

ଶ

(∆ା௖)(ఈାఊ)

(௖ାఉ)(∆ା௖)ା௖ఉ
 ,

ଵ

ଶ

௖(ఈା௥)

(௖ାఉ)(∆ା௖)ା௖ఉ
). 

The optimal profit for the supplier is  

∏ =
ଵ

଼

௖(ఈା௥)(ఈି௥)

(௖ାఉ)(∆ା௖)ା௖
∗
௨௣   

The optimal profit for each manufacturer is as follows: 

൫∏ , ∏  ∗
ௗమ

∗
ௗభ

൯ = (−
ଵ

ସ

(∆ା௖)(ఈା௥)(ఈି௥)

(௖ାఉ)(∆ା௖)ା௖
 , −

ଵ

ସ

௖(ఈା௥)(ఈି௥)

(௖ାఉ)(∆ା௖)ା௖
)  

▓ 

Proof of Corollary 2.  

Take the second-order condition of ∏  ௨௣  with respect to b  and the concavity condition 

∏  ௨௣  is given below.  

డమ ∏  ೠ೛

డ௕మ = −
{(∆ାଶ௖)[ଷఈ(ఉାଶ௦ା௖)ି௥(ଶାଷఉାଶ௦ିଶఝ)]}ା௖∆(ଷఈିଶ௥)ିଶ௖௥(∆ାଶ௖)

ଶఝ௥(∆ାଶ௖)
< 0  

From the first-order condition, the supplier’s optimal contract variable under a supply chain 

disruption is:  

𝑏∗ = −
{(∆ାଶ௖)[ఈ(ఉାଶ௦ା௖)ି௥(ଵାఉିఝ)]}ା௖∆(ఈି௥)ି௖మ௥

ఝ௥(∆ାଶ௖)
  

Where α = 𝜑𝑎ଵ + (1 − 𝜑)𝑎ଶ and 𝛽 = 𝜑𝑐௦ + (1 − 𝜑)𝑐௡௦ + 2𝑠.  



The concavity condition holds. Each of the manufacturer’s optimal decision (𝑞ଵ
∗ and 𝑞ଶ

∗) 

under the concavity condition of 
up  in b is:   

(𝑞ଵ
∗, 𝑞ଶ

∗) = (
(∆ା௖)௥

(ଶ௦ାఉ)(∆ାଶ௖)ାଶ௖(∆ା௖)
 ,

௖௥

(ଶ௦ାఉ)(∆ାଶ௖)ାଶ௖(∆ା௖)
). 

The optimal profit for the supplier is  

∏ =
ଵ

ଶ

௥మ(∆ାଶ௖)

{(ଶ௦ାఉ)(∆ାଶ௖)ାଶ௖(∆ା௖)}
∗
௨௣   

The optimal profit for each manufacturer is as follows: 

൫∏ , ∏  ∗
ௗమ

∗
ௗభ

൯ = (−
ଵ

ଶ

௥(∆ା௖)(ఈି௥)

{(ଶ௦ାఉ)(∆ାଶ௖)ାଶ௖(∆ା௖)}
 , −

ଵ

ଶ

௥(∆ାଶ௖)(ఈି௥)

{(ଶ௦ାఉ)(∆ାଶ௖)ାଶ௖(∆ା௖)}
)  

▓ 

Proof of Corollary 3.  

Move backward to the first stage of the game. Taking the second partial derivative of ∏  ௨௣  

with respect to b  yields the concave threshold for b  as below; that is, if the following 

inequality holds, ∏  ௨௣  is concave in b .  

𝜕ଶ ∏  ௨௣

𝜕𝑏ଶ
= −

2𝑛𝛼(𝜑 + 𝑠) + 𝛼(3𝑛𝛽 + 4𝑐 − 2𝑛) − 𝑟(3𝑛𝛽 + 2𝑐) − 2𝑛𝑟(1 − 𝜑 − 𝑠)

2𝑛𝜑(𝛼 + 𝑟)
< 0 

From the first-order condition, the supplier’s optimal contract variable under a supply chain 

disruption is given below.  

𝑏∗ = −
ଶ௡[(௦ାఝିଵ)(ఈା௥)ାఉ(ఈି௥)]ି௖(௥ିଷఈ)

ଶ௡ఝ(ఈା௥)
.   

where αh𝜑𝑎ଵ + (1 − 𝜑)𝑎ଶ and 𝛽 = 𝜑𝑐௦ + (1 − 𝜑)𝑐௡௦ + 2𝑠. 

Satisfying the above concave threshold, the concavity verification is valid, indicating the 

supplier’s decision in equilibrium is exactly the optimal solution. Each of the manufacturer’s 

optimal decision is   

𝑞௜
∗ =

ଵ

ଶ

ఈାఊ

௡ఉା௖
. 

The optimal profit for the supplier is  



ෑ =
1

8

𝑛(𝛼 + 𝑟)ଶ

𝑛𝛽 + 𝑐

∗

௨௣
 

Finally, we obtain the following optimal profit for each manufacturer.  

ෑ = −
1

4

(𝛼 + 𝑟)(𝛼 − 𝑟)

𝑛𝛽 + 𝑐

∗

ௗ೔

 

▓ 

Proof of Corollary 4.  

Move backward to the first stage and take the second derivative with respect to b , we have 

the concave threshold for b  as follows.  

𝜕ଶ ∏  ௨௣

𝜕𝑏ଶ
= −

𝑛𝜑(𝛼 + 𝑟) + 𝛼(2𝑛𝑠 + 4𝑐 − 𝑛) + 3𝑛𝛽(𝛼 − 𝑟) − 𝑟(2𝑐 + 𝑛 − 2𝑛𝑠)

𝑛𝜑(𝛼 + 𝑟)
< 0 

From the first-order condition, the supplier’s optimal contract variable under a supply chain 

disruption is:  

𝑏∗ = −
௡[(ଶ௦ାఝିଵ)(ఈା௥)ାఉ(ఈି௥)]ି௖(௥ିଷఈ)

௡ఝ(ఈା௥)
.   

where αh𝜑𝑎ଵ + (1 − 𝜑)𝑎ଶ and 𝛽 = 𝜑𝑐௦ + (1 − 𝜑)𝑐௡௦ + 2𝑠. 

The concavity verification is valid, indicating the supplier’s decision in equilibrium is exactly 

the optimal solution. Each of the manufacturer’s optimal decision is given by  

𝑞௜
∗ =

ଵ

ଶ

ఈାఊ

௡ఉା௖
. 

The optimal profit for the supplier is 

ෑ =
1

8

𝑛(𝛼 + 𝑟)ଶ

𝑛𝛽 + 𝑐

∗

௨௣
 

We obtain the optimal profit for each manufacturer:  

ෑ = −
1

4

(𝛼 + 𝑟)(𝛼 − 𝑟)

𝑛𝛽 + 𝑐

∗

ௗ೔

 

▓ 

Proof of Corollary 5.  

Take the second partial derivative of ∏  ௨௣  with respect to b  yields the concave threshold 

for b .  



b <

ቐ

ఝ(௔భି௔మ){(௡ାଵ)[ଶ(ଷ௦ାଵ)(ି௦ି௖)ିఝ(ଷ௡ାଶ)]}ିఝ(௡ାଵ)(௔భିଶ௔మ)(ଷ௖೙ೞ௡ିଵ)

ାଷఝ௡௥(௡ାଵ)(௖ೞି௖೙ೞ)ି(௡ାଵ)[ଷ௔మ௡(௖ೞఝା௖೙ೞ)ିଶ௡ (ଵିఝ)ିଷ௖೙ೞ௡௥ିଶ௔మ]ି

ଶ௔మ௦(௡ାଵ)(ଷ௡ାଵ)ିଶ௖(ଷ௔మ௡ିଶ௡௥ା௔మ)
ቑ

ଶఝ(௡ାଵ)(ఈା௡௥)
  

From the first-order condition, the supplier’s optimal contract variable under a supply chain 

disruption is as follows.  

𝑏∗ = −
ఈ(ఉା௦)(௡ାଵ)మା௡(ఈି௥)[(௡ାଵ)(ఉି௦)ା௖]ା(௡ାଵ)[ఈ(௖ିଵ)ି௡௥ି௡ (ఈି௥)]

ఝ(௡ାଵ)(ఈା௡௥)
.   

where α = 𝜑𝑎ଵ + (1 − 𝜑)𝑎ଶ and 𝛽 = 𝜑𝑐௦ + (1 − 𝜑)𝑐௡௦ + 2𝑠.  

Similarly, under the concavity condition of ∏  ௨௣  in b , each of the manufacturers’ 

optimal decision is given by 

𝑞௜
∗ =

ఈା௡௥

௡[(௡ାଵ)ఉାଶ௖]
  

The optimal profit for the supplier is  

∏ =
ଵ

ଶ

(ఈା௡௥)మ

(௡ାଵ)[(௡ାଵ)ఉାଶ௖]
∗
௨௣   

We have the optimal profit for each manufacturer.  

∏ =
ଵ

ଶ

(ఈା௡௥)[௡(ఈି௥)(ିଶఉ(௡ାଵ)ିଷ௖)ି௖(ఈି௡మ௥)]

௡మ(௡ାଵ)[ఉ(௡ାଵ)ାଶ௖]మ
∗
ௗ೔

  

▓ 

Proof of Corollary 6.  

When the concavity condition holds, the supplier’s optimal contract variable under a supply 

chain disruption from the first-order condition is:  

𝑏∗ = −
ଶఈ௦(௡ାଵ)మାଶ௡(ఈି௥)[(௡ାଵ)(ఉି௦)ା௖]ା(௡ାଵ)[ఈ(ଶ௖ିଵ)ି௡௥ାఝ(ఈା௡௥)]

ఝ(௡ାଵ)(ఈା௡௥)
.   

where α = 𝜑𝑎ଵ + (1 − 𝜑)𝑎ଶ and 𝛽 = 𝜑𝑐௦ + (1 − 𝜑)𝑐௡௦ + 2𝑠 

Each of the manufacturer’s optimal decision (𝑞௜
∗) under the concavity condition of ∏  ௨௣  in 

b .  

𝑞௜
∗ =

ఈା௡௥

௡[(௡ାଵ)ఉାଶ௖]
  

The optimal profit for the supplier is  

∏ =
ଵ

ଶ

(ఈା௡௥)మ

(௡ାଵ)[(௡ାଵ)ఉାଶ௖]
∗
௨௣ .  



The optimal profit for each manufacturer is as follows: 

∏ =
ଵ

ଶ

(ఈା௡௥)[௡(ఈି௥)(ିଶఉ(௡ାଵ)ିଷ௖)ି௖(ఈି௡మ௥)]

௡మ(௡ାଵ)[ఉ(௡ାଵ)ାଶ௖]మ
∗
ௗ೔   

▓ 

Proof of Proposition 1.  

We take the first derivative of *b  under the uniform charging schemes as shown in (6) with 

respect to , 
డ௕∗

డ∆
= −

ଵ

ଶ

௖మ(ଷఈି௥)

ఝ(∆ାଶ௖)మ(ఈା௥)
. As long as (3𝛼 − 𝑟) is positive, 

డ௕∗

డ∆
 is negative. 

Hence 𝑏∗ decreases as  increases. For convenience, the condition can be rewritten as:α >
௥

ଷ
.  

Similarly, we take the first derivative of 𝑏∗ under the block charging schemes as shown in 

(14), 
డ௕∗

డ∆
= −

௖మ(ଶఈି௥)

ఝ௥(∆ାଶ௖)మ. As long as (2𝛼 − 𝑟) is positive, 
డ௕∗

డ∆
  is negative so that 𝑏∗ 

decreases as  increases. For convenience, the condition can be rewritten as: α >
௥

ଶ
.  

▓ 

Proof of Proposition 2.  

As shown in (31)-(34) and (38)-(41), the proposition 1 follows.   

▓ 

Proof of Proposition 3.  

Undoubtedly, only when the market is profitable for the manufacturers do the manufacturers 

accept the contract. Both of the profit for each manufacturer from (34) and (41) are 

∏ = −
ଵ

ସ

(ఈା௥)(ఈି௥)

௡ఉା௖೔

∗
ௗ೔

 where αhe𝑎ଵ + (1 − 𝜑)𝑎ଶ and 𝛽 = φ𝑐௦ + (1 − 𝜑)𝑐௡௦ + 2𝑠 are 

non-negative. As assumed, all parameters are positive; hence, (α − r) must be negative so 

that the manufacturers could gain profits. 

▓ 

Proof of Proposition 4.  

We take the first derivative of 𝑏∗ under both charging schemes (see (31) and (38)) with 

respect to n respectively. In terms of the uniform charging scheme, 
డ௕∗

డ௡
=

ଵ

ଶ

௖೔(ଷఈି௥)

௡మఝ(ఈା௥)
. In terms 

of the block charging scheme, 
డ௕∗

డ௡
=

௖೔(ଷఈି௥)

௡మఝ(ఈା௥)
, we can see from the above-mentioned 

derivatives with respect to n that as long as (3α − r) is positive, 
డ௕∗

డ௡
 is positive, showing 



that *b  increases as n increases. For convenience, the condition can be rewritten as: α >
௥

ଷ
.  

▓ 

Proof of Proposition 5.  

(i): From (32) and (39), the optimal ordering quantity for each manufacturer under two 

charging schemes is 𝑞௜
∗ =

ଵ

ଶ

ఈା௥

௡ఉା௖೔
, where α w𝑎ଵ + (1 − 𝜑)𝑎ଶ and 𝛽 = φ𝑐௦ + (1 −

𝜑)𝑐௡௦ + 2𝑠 are not related to n. As the number of the manufacturers increases, *
iq  

decreases. (ii): In terms of the total ordering quantity Q = ∑ 𝑞௜ = 𝑛𝑞௜
௡
௜ୀଵ  from (32) and (39), 

we take the first derivative with respect to n and then we have 
డொ

డ௡
=

ଵ

ଶ

(ఈାఊ)௖

(௡ఉା௖)మ. The first order 

condition is non-negative, showing an increase in n results in the increase in Q.  

▓ 

Proof of Proposition 6.  

(i): Take the first derivative of ∏  ∗
𝒖𝒑  from (32) and (40) with respect to n, 

𝝏 ∏  ∗
𝒖𝒑

𝝏𝒏
=

𝟏

𝟖

(𝜶ା𝜸)𝟐𝒄𝒊

(𝒏𝜷ା𝒄𝒊)𝟐. 

Because of the quadratic terms in both denominator and numerator and positive production cost 

𝒄𝒊, 
𝝏 ∏  ∗

𝒖𝒑

𝝏𝒏
 is always positive. The supplier’s profit increases as n increases. (ii): Take the first 

derivative of ∏  ∗
𝒅𝒊

 from (32) and (40) with respect to n: 
𝝏 ∏  ∗

𝒅𝒊

𝝏𝒏
=

𝟏

𝟒

(𝜶ି𝜸)(𝜶ା𝜸)𝜷

(𝒏𝜷ା𝒄𝒊)𝟐 . As proved in 

Proposition 2, 𝜶 − 𝒓 < 𝟎 must be satisfied so that the manufacturers accept the contract with 

the supplier. Thus, 
𝝏 ∏  ∗

𝒅𝒊

𝝏𝒏
 is always negative and the profit for each manufacturer (∏  ∗

𝒅𝒊
) 

decreases as n increases.  

▓ 

Proof of proposition 7.  

As shown in (45)-(48) and (52)-(55), the proposition 7 follows.  

▓ 

Proof of Proposition 8.  

(i): From (46) and (53), the optimal ordering quantity for each manufacturer under two 

charging schemes is 𝑞௜
∗ =

ఈା௡௥

௡[(௡ାଵ)ఉାଶ௖]
 where αhe𝑎ଵ + (1 − 𝜑)𝑎ଶ and 𝛽 = φ𝑐௦ +

(1 − 𝜑)𝑐௡௦ + 2𝑠. We take the first derivative of 𝑞௜
∗ with respect to n, 

డ௤೔
∗

డ௡
=



−
ఉ௡మఊାଶఈఉ௡ାఈఉାଶఈ௖

௡మ(ఉ௡ାఉାଶ௖)మ . Because of the quadratic terms in denominator and all positive 

parameters, the first order condition 
డ௤೔

∗

డ௡
 is always negative, indicating the optimal ordering 

quantity for each manufacturer decreases with the number of the manufacturers. (ii): In terms 

of the total ordering quantity, we take the first derivative of Q  with respect to n, 
డொ

డ௡
=

−
ఉ(ఈିఊ)ିଶ௖ఊ

(ఉ௡ାఉାଶ௖)మ. Because of the quadratic term in denominator, positive parameters and α − γ

< 0, 
డொ

డ௡
 is always non-negative. The total ordering quantity increases with the number of the 

manufacturers. 

▓ 

 


